Plant Science Bulletin archive

Issue: 2012 v58 No 4 WinterActions

background image






Winter 2012 Volume 58 Number 4


In This Issue..............

   Honoring Walter Hodges......p. 164

Don’t miss Botany 2013 Field Trips....p. 148

Thank for your generous support......p. 146


what can you contribute?


 to be launched January 2013

background image

From the Editor

                                                                                  Winter 2012 Volume 58 Number 4



Editorial Committee  

Volume 58

Root Gorelick  


Department of Biology & 

School of Mathematics & 


Carleton University 

Ottawa, Ontario 

Canada, K1H 5N1

Elizabeth Schussler  


Department of Ecology  & 

Evolutionary Biology 

University of Tennessee 

Knoxville, TN 37996-1610

Christopher Martine 


Department of Biology 

Bucknell University 

Lewisburg, PA 17837 


Carolyn M. Wetzel 


Department of Biological Sci-

ences & Biochemistry Program 

Smith College 

Northampton, MA 01063 

Tel. 413/585-3687


Lindsey K. Tuominen 


Warnell School of Forestry & 

Natural Resources 

The University of Georgia 

Athens, GA  30605

For the past few years I’ve been working on a 

project to interpret the history of botanical education 

in this country.  One of the themes that becomes 

increasingly clear in the twentieth century is that 

individual botanists and small groups of botanists have 

consistently gone through phases of “reinventing the 

wheel.”  Virtually all of the pedagogical “innovations” 

that you could list today have been tried in the 

past—but they haven’t “stuck”!  I hope to address 

some of the reasons why in future issues of PSB and 

in a final presentation at the 2013 annual meeting in 

New Orleans.  But let me jump ahead quickly to the 

present.  There is one major difference between all of 

the previous cycles of attempting to improve science 

education and the one we are currently in.  Today it’s 

not just a few individuals, or a single organization, 

that is taking the lead.  Instead, we have a confluence 

of efforts, both top down and bottom up, that are all 

reaching the same conclusions.  The National Academy 

of Sciences Board on Science Education, The College 

Board’s Advanced Placement Biology Curriculum, 

and the American Association for the Advancement 

of Science all have developed guidelines for revising 

the science curriculum – and they’re all basically alike.  

Botanists, through BSA and ASPB, have had our input 

into the latter: AAAS’s Vision and Change.  Our final 

effort is included in these pages.  We encourage you 

to reassess your own introductory courses with these 

guidelines in mind.

Finally, you may notice something missing in this 

issue.  For the first time since I became editor, we are 

not publishing a single feature article.  In fact, only a 

single article is currently in review, although I’ve been 

assured that several are in preparation.  I want to take 

this opportunity to encourage you to consider sharing 

some of your work with the membership and other 

readers of these pages. Submit your articles at http://

background image


Table of Contents

Society News ...............................................................................................


Sincere thanks to all of our donors  ............................................................................... 146

Plant Science Research Summit Final Report ............................................................... 149

ASPB – BSA Core Concepts and Learning Objectives in Plant Biology  

  for Undergraduates ................................................................................................... 149

BSA Science Education News and Notes ....................................................


Cross-Organization Connections and Education Opportunities .................................... 156

Digital Resource Discovery and Life Discovery Conference Collaboration ................ 156

Understanding Evolution Invitation to Partner .............................................................. 156

New Free Resource for Case-Based Learning ............................................................... 156

Core Concepts in Undergraduate Plant Biology ............................................................ 157

American Institute for Biological Sciences (AIBS) and Partner Activities................... 157

BSA at National Association of Biology Teachers  ....................................................... 157

PlantingScience Successes and Next Steps ................................................................... 158

Plant Blog on Huffington Post ....................................................................................... 158

Editors Choice Reviews ...............................................................................


Announcements ............................................................................................


Ethics CORE - Can You Help? ...................................................................................... 160

Bullard Fellowships in Forest Research  ....................................................................... 160

Position Available—University of Northern Colorado ................................................. 160

Angiosperm Origins—Monocots First? ........................................................................ 162

Funding for Plant Conservation and Native Plant Materials Programs ........................ 162

Hunt Institute Receives National Film Preservation Foundation Grant ........................ 164

Impulsive Micromanagers help plants to adapt, survive ............................................... 165

Plants Exhibit a Wide Range of Mechanical Properties ................................................ 166

Triage for plants: NYBG scientists develop and test rapid species conservation  

  assessment technique ................................................................................................ 167

Reports and Reviews ....................................................................................


Books Received ...........................................................................................


Hilton Riverside, New Orleans, LA  July 27-31, 2013

background image


Society News

James D. Ackerman
Afiz Ajibade
Edith B. Allen
Nan Crystal Arens
Rafael E Arevalo Burbano
Joseph & Nancy Armstrong
Sidney R. Ash
Nina Lucille Baghai-Riding
Stokes S. Baker
Bruce G. Baldwin
Grant M. Barkley
Mary Barkworth
Karen Barnard
Ellen T. Bauder
Amy Berkov
Charles E. Blair
Linda M. Broadhurst
Luc Brouillet
Steven B Broyles
Leo P. Bruederle
Janelle M. Burke
Imre Matyas Buzgo
Melanie Byerley
Diane L. Byers
Aubrey Cahoon
Clyde L. Calvin
Andrea L. Case
Brenda B. Casper
Russell L. Chapman

William Cheadle
Gregory P Cheplick
Hong-Keun Choi
John Choinski
Lynn G. Clark
Jim Cohen
Margaret E Collinson
Paul L. Conant
Martha E. Cook
Todd J. Cooke
Janice Marie Coons
S. H. Costanza
Nancy Coutant
Nancy E. Cowden
William Louis Crepet
Wilson Crone
Mitchell Cruzan
Chicita F. Culberson
Theresa M. Culley
Peter S. Curtis
Edward J. Cushing
Stephen Darrel Davis
Carol Dawson
Ted Delevoryas
Darleen A. Demason
Nancy Dengler
Melanie L. Devore
Pamela Kathleen Diggle
Kevin W. Dougherty

Jennifer Doubt
Andrew Nicholas Doust
Rebecca Drenovsky
Leah S. Dudley
Bohdan Dziadyk
Susan E. Eichhorn
Wayne J. Elisens
Diane Marie Erwin
Frank W. Ewers
Lafayette Frederick
Vicki A. Funk
Candace Galen
Moira Galway
Maria A. Gandolfo
Janet L. Gehring
Jennifer Geiger
Lawrence J. Giles
Thomas J. Givnish
Daniel K. Gladish
Stefan Erwin Gleissberg
Martin C. Goffinet
Charles W. Good
Uromi Manage Goodale
Carol Goodwillie
Hazel J. Gordon
Linda Graham
Sean W. Graham
Brenda J. Grewell
Cecilia Greyson 

Sincere thanks to all of our donors for their generous 

support of our multiple sections, student awards and travel 

funds, and the BSA Endowment

background image


Plant Science Bulletin 58(4) 2012

Judy Parrish
William J. Platt
Cyrille Prestianni
Katherine A. Preston
Robert A. Price
Thomas Ranker
Eric Ribbens
Steve Rice
Jennifer H. Richards
Ricarda Riina
Vanessa Lopes Rivera
Alison W. Roberts
Robert G. Ross
Thomas Lowell Rost
Carl Rothfels
Scott D. Russell
Peter Ryser
Ann Sakai & Stephen Weller 
Carl D Schlichting
Andrew Schnabel
Edward L. Schneider
Eileen K. Schofield
Lisa M. Schultheis
Patricia Jean Schulz
James & Marilyn L. Seago
Elizabeth C. Seastrum
Joanne M. Sharpe
Michael Simpson
Lawrence & Judith E. Skog
Michelle Amber Smith
Selena Y. Smith
Allison Ann Snow
Douglas & Pamela Soltis
John R. Spence
Kelly P. Steele
James B. Stichka
Peter F. Straub

Takahide Kurosawa
Elizabeth P. Lacey
David W. Lee
Blanca R. Leon
Geoffrey Levin
Amy Litt
William Mclagan Malcolm
Greayer Mansfield-Jones
Brigitte Marazzi
Marilyn C. Marynick
Lucinda Ann Mcdade
David J. Mclaughlin
Dr. Manjari A. Mehta
Irving A. Mendelssohn
Brigitte Meyer-Berthaud
Helen J. Michaels
James E. Mickle
Charles N. Miller Jr
Brent Mishler
L Maynard Moe
Brenda Molano-Flores
Arlee M. Montalvo
Nancy Morin
Mark E. Mort
Lytton John Musselman
Joan E. Nester-Hudson
Trina L. Nicholson
Karl J. Niklas
Mart Nirzka
Harufumi Nishida
Eisho Nishino
Gretchen B. North
Sally L. Norton
Richard Nuss
Richard G. Olmstead
Jeffrey M. Osborn
Virgil T. Parker

Yaffa L. Grossman
Jocelyn Hall
Judith Hanks
Gary L. Hannan
Clare Ann Hasenkampf
Marsha & Christopher Haufler
Donna Hazelwood
Leo J. Hickey
Jason Hilton
Ann Hirsch & Stefan Kirchanski 
Hans R. Hoester
Joseph Hogg
Noel & Patricia Holmgren 
Kent E. Holsinger
Raymond W. Holton
Marcus Hooker
Harry & Celia T. Horner
Tom Horton
Carol L. Hotton
Shing-Fan Huang
Francis M. Hueber
Bonnie L. Isaac
Rachel Schmidt Jabaily
Anna L. Jacobsen
Claudia L. Jolls
Cynthia S. Jones
Tracy Lynn Kahn
Dorothy Kaplan 
Lee B. Kass
Kathleen H. Keeler
Sterling C. Keeley
Amanda Kenney
Robert A Klips
Olga R. Kopp
Suzanne Koptur
Jean D. Kreizinger

background image


Plant Science Bulletin 58(4) 2012

Peter Wilf
Joseph H. Williams
Carol Wilson & Clyde Calvin 
M. F. Wojciechowski
Eckhard Wollenweber
Richard Lee Wurdack
Atsushi Yabe
Jun Yokoyama
Elizabeth A. Zimmer
Wendy B .Zomlefer

Andrew Stuart
Marshall & Sara D Sundberg
Jennifer A. Tate
Thomas N. Taylor
Edith L. Taylor
Irene Terry
Barbara Thiers
Rahmona A. Thompson
Bruce H. Tiffney
Lindsey K. Tuominen

Lowell E. Urbatsch
Mario Vallejo Marin
Paul Leszek Vincent
Andrea Wakefield
Don Waller
Megan Ward
Linda E. Watson
Cherie L. R. Wetzel
Elisabeth Wheeler
Richard Whitkus

Alligator Bayou is easily accessible off I-12 at Prairieville, just south of Baton 

Rouge on the way to New Orleans.  A short distance from the landing the bayou 

expands into Cypress flats where a few old-growth trees, and numerous stumps 

from logged trees emerge from a mat of water hyacinth.  Scenes like this occur 

throughout South Louisiana - - be sure to sign up for one of the field trips associated 

with the annual meeting next summer.  (photo by Marsh Sundberg)

background image


Plant Science Bulletin 58(4) 2012

plants is becoming ever more critical – whether we 

are discussing ecosystems, fields, or single cells – it 

is useful to begin discussion of points we can agree 

on and put forward to policy-makers.
-Elizabeth A. Kellogg, President, Botanical Society 

of America 

Plant Science Research 

Summit Final Report

The final report of the Plant Science 

Research Summit, held in September 2011, 

is now available at


report.pdf. The summit was convened by the 

American Society of Plant Biologists, with the goal 

of defining a set of common priorities for plant 

science research.  As described in the Plant Science 

Bulletin (2012, 58: 1), the summit was attended by 

three representatives of the BSA, then President-

elect Elizabeth Kellogg, Past-president Judy Skog, 

and Treasurer Amy Litt.  This summary document 

represents the input of a broad set of plant biologists, 

although as noted in my original report in PSB, 

ecology and evolutionary biology were somewhat 

under-represented.  In fairness to the organizers, 

the people who they originally invited to represent 

those disciplines were unable to attend.

It is worth reading the document as a statement 

of broad goals shared by many plant biologists.  The 

hope is to use this in efforts to generate funding 

for plant research in its broadest sense.  The first 

paragraph of the Executive Summary reads: 

“Now, more than ever, it is vital to increase public 

and private support for plant science research 

and recognize the critical need to invest in its 

future and embrace its potential.”  The four grand 

challenges identified by the document are (1) 

Ensure nourishment for all, now and in the future; 

(2) Protect, enhance and illuminate the benefits of 

nature; (3) Fuel the future; and (4) Be sustainable.   

Much of the sort of science described in this 

report fits into the concept of “use-inspired basic 

research,” outlined by Donald Stokes in the book 

Pasteur’s Quadrant (Brookings Institution Press, 

1997).  He observes that the linear view of a 

continuum between basic and applied research is 

too constraining.  Instead he suggests that some 

scientific studies may search for fundamental 

understanding of nature, while working in areas 

that may ultimately benefit humans.  

Like all policy documents, the summary report 

represents the views of a particular set of people at a 

particular time and is likely to lead to other similar 

documents in the future that highlight different 

aspects of the plant science agenda.  It is perhaps 

worth recalling Ben Franklin’s famous statement 

“We must all hang together, or assuredly we shall 

all hang separately.”  At a time when knowledge of 

ASPB – BSA Core Concepts and 

Learning Objectives in Plant 

Biology for Undergraduates

The American Association for the Advancement 

of Science, National Science Foundation (NSF), 

and other stakeholders recently published a call 

to transform undergraduate biology education, 

titled  Vision and Change  (http://visionandchange.

org/finalreport). Major themes of Vision and 

Change include teaching core concepts and 

competencies, focusing on student-centered 

learning, promoting campus-wide commitments 

to change, and engaging the biology community in 

implementation of change. The American Society 

of Plant Biologists (ASPB) and Botanical Society 

of America (BSA) were among the first societies 

to become involved in Vision and Change. NSF 

awarded ASPB a grant to host a workshop in 2011 

to gather feedback from plant biologists on how 

to put the Vision and Change recommendations 

into practice. One of the major concerns that 

emerged from this workshop was the lack of a 

defined set of core concepts in plant biology that 

undergraduates should learn. This lack results in 

underrepresentation or misrepresentation of plants 

in undergraduate curricula and misunderstanding 

about the importance and unique functions of plants 

and their broader contributions to understanding 

biology (e.g., plants “don’t do much”; plants are 

“only important for photosynthesis”; plants are “not 

interesting” to study). 

To address these concerns, a working group of 

ASPB and BSA members was assembled: Kathleen 

Archer (Trinity College), Erin Dolan (University of 

Georgia), Roger Hangarter (Indiana University), 

Ken Keegstra (Michigan State University), Judith 

Skog (George Mason University), Susan Singer 

(Carleton College), Neelima Sinha (UC Davis), 

Anne Sylvester (University of Wyoming), and Sue 

Wick (University of Minnesota). The working 

group was tasked with generating a set of core 

concepts that: 

•  outline what undergraduate biology majors 

should learn about plants; 

background image


Plant Science Bulletin 58(4) 2012

•  are consistent with themes from Vision and 

Change and the new K-12 science education 

•  are the enduring, big ideas that explain what 

makes plants distinct from other lineages of 

organisms and describe the essential attributes 

and life strategies of plants; and
•  are broad and foundational in nature, and can 

be divided further into multiple sub-concepts or 

units of knowledge (e.g., learning objectives) that 

are measurable.
For the purposes of this effort, plants were 

defined as: eukaryotic photosynthetic organisms 

with multicellular haploid and diploid stages in their 

life cycle and protected diploid embryos.

ASPB and BSA members were invited to comment 

on a draft of the core concepts, and their feedback 

was used to generate the final version that follows. 

The concepts are organized into the four life science 

domains of the new framework for K-12 science 

education developed by the National Academy of 

Sciences Board on Science Education (http://www. (1) From 

Molecules to Organisms: Structures and Processes

(2) Ecosystems: Interactions, Energy, and Dynamics

(3)  Heredity: Inheritance and Variation of Traits

and (4) Biological Evolution: Unity and Diversity

Each set of concepts begins with a description 

of the foundational knowledge in the domain. 

Individual concepts are followed by sample learning 

objectives: what students could do to demonstrate 

their understanding of the concept. ASPB and 

BSA leadership urge all who teach undergraduate 

biology students to use this document as a guide for 

curricular design and instruction.

1. From Molecules to Organisms: Structures 

and Processes. Plants are living organisms that 

grow, reproduce, and die. Plants and their parts are 

made up of cells, which contain DNA and other 

molecules that support plant functions. Plants are 

attached and do not move from place to place to 

acquire resources for survival. Plants grow toward 

resources and have specific structures, called 

chloroplasts, which carry out the reactions of 

photosynthesis. Using the energy captured from 

sunlight, plants produce molecules to support their 

own growth and development. Plants also take up 

water and inorganic nutrients from their terrestrial 

or aquatic environment.  Plant cells are bounded 

by cell walls that are essential for growth and 

development of the plant body. 

1A: Structure and Function. How do structures 

of plants enable life functions?

•  Plants growing in various environments 

have a diversity of structures for acquiring and 

retaining water, exchanging gases, optimizing 

photosynthesis, and supporting growth and 


 »Learning objective (LO): Compare and 

contrast the structures by which vascular 

and non-vascular plants obtain and 

retain water, allow for gas exchange for 

photosynthesis, and allow for long-distance 

internal transport of water.

 »LO: Map onto a phylogenetic tree of 

plants the locations where innovations for 

acquiring water, retaining water, exchanging 

gases, upright stature, and reproduction in 

the absence of swimming sperm arose.  

 »LO: Analyze structural and anatomical 

features that optimize photosynthesis under 

various environmental conditions such as 

shading, water deficit, or high temperature.

•  Plants have carbohydrate-based cell walls that 

serve diverse functions. 

 »LO: Contrast the primary cell wall 

component of plants, fungi, and bacteria.

 »LO: Analyze the roles of cellulose and cell 

wall matrix components in support, growth, 

and cell-cell recognition as well as protection 

against pathogens.

•  Plants have specialized structures and systems 

for defense against disease and predation. 

 »LO: Categorize defense mechanisms into 

structural, constitutive biochemical, and 

induced biochemical responses, evaluating 

the cost and benefits of each.

•  Plants have conducting tissues that transport 

water, carbohydrates, and nutrients through 

both passive and active mechanisms.

 »LO: Compare and contrast the long-distance 

transport of carbohydrates with that of water 

and nutrients in a plant.

 »LO: Diagram the pathway of carbohydrate 

transport from a source to a sink, indicating 

where active transport is required.

•  Some plants and plant parts are able to move. 

 »LO: Categorize plant structures and their 

background image


Plant Science Bulletin 58(4) 2012

particular features that facilitate dispersal of 

the plant in the environment

 »LO: Select a plant structure that is capable 

of movement and analyze the features that 

enable it to move.

1B: Growth and Development of Organisms. 

How do plants grow and develop?

•  Plants can reproduce sexually and asexually.

 »LO: Categorize examples of asexual 

reproduction based on the plant structures 


 »LO: Select a plant and diagram the 

contributions of the gametophyte(s) to 

sexual reproduction.

•  Plants grow from single cells and retain 

groups of undifferentiated and dividing cells 

throughout their lives.

 »LO:  Support the claim that plants continue 

to develop and differentiate new structures 

after formation of a multicellular structure 

by drawing and identifying regions of a plant 

with persistent meristem activity.

 »LO: Using examples, explain how shoots and 

roots are repeatedly added to a plant through 

meristem activity.

•  Plant germ-line cells are established after 

vegetative growth has started. 

 »LO: Explain when and where in the plant 

meiosis occurs. 

•  The development of plant form is influenced 

by external and internal cues.

 »LO: Categorize internal and external cues 

based on their effects on plant form.

 »LO: Draw a diagram that represents the 

effect of a specific wavelength of light 

on plant form; include photoreceptors, 

signal transduction, gene expression, and 

morphological change in the diagram.

 »LO: Draw a diagram that illustrates the effect 

of gravity on plant form; include receptors, 

signal transduction, gene expression, and 

morphological change in the diagram.

 »Plants produce and respond to hormones 

that regulate growth and development.

 »LO: Identify the categories of plant hormones 

and provide examples of their effects on 

growth and development.

 »LO: Compare and contrast the production of 

and response to a steroid hormone in a plant 

and an animal.

•  Cell expansion depends on biochemical and 

biophysical processes, including wall loosening 

and water pressure inside the cell.  

 »LO: Diagram how internal and external 

cues integrate to contribute to mechanisms 

of cell expansion.

1C: Organization of Matter and Energy Flow 

in Organisms.  How do plants obtain and use 

matter and energy to live and grow?

•  Plants capture light energy to assimilate 

inorganic carbon dioxide into organic 


 »LO: Create a diagram showing how 

inorganic carbon is assimilated into organic 

compounds in plants and overlay this with 

the flow of energy through the plant.

•  Plants take up and transport inorganic 

materials from their surroundings.

 »LO: Trace the path of movement of inorganic 

nutrients from soil into the aboveground 

part of the plant

 »LO: Compare the roles of mycorrhizae and 

root nodules in the uptake of inorganic 

materials in plants. 

 »LO: Identify the two inorganic molecules 

that are used to produce the majority of a 

plant’s mass, and indicate their sources.

 »LO: Explain how the availability of soil 

microorganisms has supported or limited the 

growth of economically important plants.

•  Plants capture and use energy from sunlight. 

Almost all other organisms on the planet eat 

plants as a source of energy.

 »LO: For a terrestrial ecosystem, analyze the 

flow of energy among organisms.

•  Plants photosynthesize and respire. 

 »LO: Explain why plants can grow in a closed 


•  Plants synthesize a wide variety of organic 

compounds through diverse biochemical 


 »LO: Choose a class of organic compounds 

other than sugars and, in general terms, 

explain the carbon and energy sources for 

synthesis of these materials.

background image


Plant Science Bulletin 58(4) 2012

1D: Information Processing.  How do plants 

detect, process, and interpret information from 

the environment?

•  Plants detect and respond to physical and 

biological cues in their environment, including 

light, water, gravity, biochemical, and mechanical 


 »LO: Construct a representation of a 

molecular receptor for a physical or 

biological signal that clearly shows how the 

signal is detected and how information is 

conveyed from the receptor to the plant cell.

•  Signals transmitted through a plant can 

induce changes in gene expression, protein 

activity, and protein turnover.

 »LO: Compare and contrast a signaling 

pathway that leads to the activation of a 

cytosolic enzyme and a pathway leading to 

changes in gene expression.

•  Plants can respond to stimuli over a broad 

range of time scales. 

 »LO: Choose a stimulus that has an immediate 

response in a plant and a stimulus that 

results in a response days or weeks later; 

compare and contrast the information 

processing in the two examples. 

•  Plants perceive and respond to each other and 

to other organisms in their environment. 

 »LO: Diagram how a signal from a plant is 

perceived and acted upon by another plant.

 »LO: Compare and contrast how a plant 

detects, processes, and interprets information 

from an herbivore and a pathogen.

 »LO: Provide examples of how herbivory 

alters plant growth.

2. Ecosystems: Interactions, Energy, and 

Dynamics.  Ecosystems are communities 

of organisms and their nonliving physical 

environment.  Ecosystems are defined by complex 

hierarchical networks of interactions among 

individuals and populations, as well as interactions 

between organisms and their environment. All 

organisms in an ecosystem are linked through 

energy flow and cycles of water, carbon, nitrogen, 

and soil minerals. Energy enters the ecosystem 

mostly through photosynthesis and biomass 

production by plants. Other organisms obtain 

matter and energy from the plants. Decomposers 

act on dead organic matter, releasing carbon back 

to the atmosphere and facilitating nutrient cycling 

by converting nutrients stored in dead biomass 

back to forms that can be reused. Ecosystems are 

dynamic and changes in biotic and abiotic factors 

affect their stability and resilience. Humans are part 

of the biotic community and are having rapid effects 

on the biotic and abiotic aspects of ecosystems. In 

many cases, humans are placing profound stresses 

on the Earth’s overall ecosystem to a point that 

ecosystem resilience, sustainability, and services are 

a major focus of concern.

2A: Interdependent Relationships in 

Ecosystems. How do plants interact with the living 

and non-living environment?

•  Plants are the primary food and oxygen 

producers on Earth.

 »LO: Compare the relative contributions of 

plants and another photosynthetic organisms 

like lichens or terrestrial algae to production 

of food and oxygen on land.

•  Plants are foundational to large ecosystems.

 »LO: Evaluate the statement that plants are 

the foundation of terrestrial ecosystems.

•  Plants live in close association and interact 

with other organisms, including other plants, 

animals, fungi, and microorganisms. 

 »LO: Chose an example of an interaction 

between a plant and another organism and 

elaborate on the ways in which they interact 

to the benefit of one or both organisms.

•  Plants produce metabolites that affect other 

organisms in ecosystems. 

 »LO: Choose a plant metabolite that affects 

other organisms in the ecosystem and 

explain the mechanism of the effect.

•  Plants have changed and continue to change 

Earth systems. 

 »LO: Evaluate the geological evidence that 

plants contributed to glaciation (i.e., ice 


 »LO: Contrast the general properties of 

plants, soil, and fauna on Earth at the time 

that plants first colonized dry land with the 

general properties of those organisms today.

 »LO: Analyze the progression of changes in 

plants and other organisms that occur after 

a volcanic eruption or a major wildfire.

background image


Plant Science Bulletin 58(4) 2012

2B: Cycles of Matter and Energy Transfer in 

Ecosystems.  How do matter and energy move 

through an ecosystem?

•  Energy first enters ecosystems through 


 »LO: Evaluate the claim that energy first 

enters the ecosystem through photosynthesis; 

consider relative to chemosynthesis.

•  Plants cycle oxygen and carbon dioxide 

through photosynthesis and respiration.

 »LO: Create a diagram that illustrates the 

flow of oxygen and carbon dioxide through 

photosynthesis and respiration in an 


•  Plants cycle water in ecosystems through 

photosynthesis, respiration, and transpiration.

 »LO: Diagram the flow of water through an 

ecosystem, incorporating photosynthesis, 

respiration, and transpiration.

•  Plants are central to the global carbon cycle 

through photosynthesis.

 »LO: Estimate the impact of a reforestation 

and/or deforestation project of 1 million 

hectares on the global carbon cycle.

•  Plants participate in cycling nitrogen and 

other nutrients. 

 »LO: Evaluate the nitrogen runoff into 

watersheds from fields of nitrogen-fixing 

crops versus fields of crops fertilized with 

inorganic nitrogen.

2C: Ecosystem Dynamics, Functioning, and 

Resilience. What happens to ecosystems when the 

environment changes?

•  Resilience of ecosystems depends on the 

diversity of plant species.

 »LO: Evaluate a current research paper 

on how plant diversity affects ecosystem 

resiliency after a disturbance.

•  Plant populations are affected by 

environmental changes, which alter ecosystems. 

 »LO:  Consider a situation in which 

population size or distribution of plants is 

altered due to changes in climate, herbivore 

populations, or invasive species, and predict 

how this might affect other aspects of the 


3. Heredity: Inheritance and Variation of 

Traits.  Like other organisms, plants use DNA to 

store genetic information and encode proteins, 

which underlie the plant’s traits. Genes containing 

DNA are organized into chromosomes and variants 

of a given gene are called alleles. Each cell of a plant 

contains a complete set of chromosomes, and the 

same genetic information. As in other organisms, 

plants transmit their genetic information from 

parent to offspring, and from parent cell to 

daughter cell. Inheritance of chromosomes from 

parent to offspring explains why offspring have 

traits that resemble the traits of their parents. 

Mutations also cause variation in traits, which may 

be harmful, neutral, or occasionally advantageous 

for an individual.

3A: Variation of Traits. Why do individuals of 

the same species vary in how they look and behave?

•  Some natural populations of plants vary 

widely in their phenotypes.

 »LO: Identify a trait in a natural population of 

plants, then collect and analyze phenotypic 

data to determine how much the trait varies.

•  Gene expression in plants is controlled by 

genetic and environmental cues.

 »LO: Analyze data from an online repository 

of gene expression data to determine how 

genetic differences or environmental cues 

affect patterns of gene expression.

 »LO: Design and conduct an experiment to 

compare the expression of a gene of interest 

under different environmental conditions.

 »LO: Predict differences in gene expression in 

mutant versus wild-type plants based on the 

function of the gene.

3B: Inheritance of Traits. How are 

characteristics of one generation related to the 

previous generation?

•  Plants can exist in haploid, diploid, and 

polyploid states. 

 »LO: Design an experiment to determine the 

ploidy of a plant tissue.

•  Plants vary in their reproductive strategies. 

Some self-fertilize, which can lead to offspring 

that are genetically similar. Others have 

mechanisms to ensure transfer of gametes 

between different plants, which results in novel 

genetic combinations.

background image


Plant Science Bulletin 58(4) 2012

 »LO: Compare the genetic diversity of the 

offspring of a plant that is reproducing 

sexually versus asexually.

•  Some plants can reproduce asexually, 

producing offspring that are genetically identical 

to each other and to the parent.

 »LO: Compare the amount of genetic variation 

in the offspring of a plant that self-fertilizes 

and a plant that reproduces asexually.

•  Some plants can hybridize within and 

between species, which can result in novel traits 

in the offspring.

 »LO: Select an example of within species 

hybridization (e.g., hybrid corn) and explain 

why this can result in desirable agricultural 


 »LO: Diagram the flow of chromosomes from 

plants of two different species that hybridize 

to their offspring; construct an argument for 

whether the offspring will reproduce.

 »LO: Select a crop plant that is the result of 

hybridization and subsequent polyploidy 

(e.g., wheat or banana) and discuss how 

polyploidy corresponds with important 

agricultural traits.

4. Biological Evolution: Unity and Diversity. 

Like all organisms, plants evolved from a single 

celled organism and continue to evolve. The fossil 

record of plants and many characteristics of living 

plants provide strong evidence for evolution. 

For example, plants use the same genetic code as 

other organisms, providing evidence for a single 

origin of life. Like other eukaryotic organisms, 

plants have mitochondria and a nuclear envelope. 

Plants also have chloroplasts, which resulted 

from the endosymbiosis between a eukaryotic 

cell and a photosynthetic bacterium. Diversity 

of plants is especially critical in the face of global 

climate change; plants and other photosynthetic 

organisms have the capacity to reverse increases in 

atmospheric carbon dioxide levels. The important 

roles that plants play in human life as food, feed, 

fuel, fiber, shelter, and pharmaceuticals have shaped 

human civilization. The evolution of plants is 

affected by humans, and affects humans.

4A: Evidence of Common Ancestry and 

Diversity.  What evidence shows that different 

species are related?

•  Plants have many genes and gene families in 

common with all other organisms.

 »LO:  Using gene trees, support the argument 

that plants have many genes and gene 

families in common with all other organisms.

•  All plants have chloroplasts with similar 

structure and pigment composition; this is the 

result of a single endosymbiotic event between a 

eukaryotic cell and an ancestral cyanobacterium.

 »LO:  Analyze the structural and biochemical 

evidence for the claim that a single 

endosymbiotic event between a eukaryotic 

cell and a cyanobacterium was ancestral to 

all chloroplasts, including chloroplasts in 

algal groups. 

 »LO: Formulate an evolutionary hypothesis 

that accounts for the both the similarities 

and differences among the chloroplasts of red 

algae, brown algae, green algae, and land 

plants, including differences in the number 

of membranes. 

•  Plants have multicellular haploid and 

multicellular diploid stages in their life cycles.

 »LO:  Draw a generic plant life cycle indicating 

the role of meiosis and mitosis in establishing 

multicellular haploid and multicellular 

diploid stages.

 »LO: Contrast the relative size of the 

multicellular haploid stage in mosses, ferns, 

and angiosperms.

•  DNA sequences have helped establish the 

relationships among major plant clades and 

between plants and other organisms.

 »LO: Use a computational phylogenetic tool 

and DNA sequences of one or more genes to 

predict the evolutionary relationships among 

major plant clades or between plants and 

other organisms.

4B: Natural Selection.  How does variation 

among plants affect survival and reproduction?

•  Diversity of organisms at the chromosome 

and gene level can be generated in several 

ways, including recombination, mutation, 

hybridization, and polyploidy, resulting in 

the variation underlying evolution by natural 


 »LO: Compare the relative contributions of 

recombination, mutation, hybridization, 

and polyploidy to plant diversity.

background image


Plant Science Bulletin 58(4) 2012

 »LO: Explain the biological constraints for 

hybridization and polyploidy to successfully 

increase plant diversity.

•  Diversity among plants may be influenced by 

factors such as epigenetics (i.e., structural rather 

than sequence level changes in DNA) that affect 

the way genes are expressed.

 »LO: Explain how epigenetic phenomena 

such as DNA methylation and histone 

modification lead to phenotypic variation 

among plants that are otherwise genetically 


•  Some plant species can survive a diverse and 

changing environment. Others cannot, which 

results in their extinction.

 »LO: For various species that exhibit a range 

of diversity, predict some possible outcomes 

of expansion of their distribution due to 

climate change. 

 »LO: If a new pathogen or herbivore is 

introduced, predict possible outcomes for a 

plant species, relative to its diversity.

4C: Adaptation.  How does the environment 

influence populations of plants over multiple 


•  Adaptation of plants to a variety of 

environments on Earth has resulted in a 

great diversity of structures and physiological 


 »LO: Categorize symbiotic relationships that 

have adapted plants to life in a terrestrial 


 »LO: Compare strategies that have evolved 

for population migration and dispersal 

in mosses, ferns, gymnosperms, and 


 »LO: Select and evaluate an adaptation in 

plants for retaining water while facilitating 

gas exchange.

 »LO: For an aquatic plant, select, and evaluate 

an adaptation for retaining gases needed for 


 »LO: Compare structures and their 

modifications in desert plants from the 

southwestern U.S. and South Africa.

4D: Biodiversity and Humans.  What is 

biodiversity, how do humans affect it, and how 

does it affect humans?

•  Diversity of plant species is important for the 

long-term health of an ecosystem. 

 »LO: Analyze data from a recent paper on 

ecosystem biodiversity and evaluate the 

authors’ conclusions.

•  Human activity has affected global plant 

diversity, especially through the alteration of 


 »LO: Using Long Term Ecological Research 

(LTER) data sets, examine historical and 

current biodiversity data for a particular 

region and illustrate how the physical 

environment and biodiversity have changed 

as a result of human activity.

•  Human selection has affected almost every 

aspect of crop plants, including their structure, 

reproduction, genetics, and adaptation. 

 »LO: For a given crop plant (corn, Brassica, 

wheat, soy, potato, tomato, bean, banana, 

etc.), compare its structure, reproduction, 

genetics, and adaptation relative to its wild 


 »LO: Select a crop plant (e.g., corn, rice, 

potato) and trace the evolutionary changes 

that occurred through human domestication 

of the wild relative.

 »Agriculture shapes human populations, 

including their size, distribution, and 


 »LO: Compare the size, distribution, and 

culture of a human population before and 

during the introduction of agriculture.

 »LO: Compare the size, distribution, and 

culture of a human population as agriculture 

became more sophisticated after 1900.

background image


BSA Science Education 

News and Notes

BSA Science Education News and Notes is a quarterly update about the BSA’s education efforts and the 

broader education scene.  We invite you to submit news items or ideas for future features.  Contact:  Claire 

Hemingway, BSA Education Director, at or Marshall Sundberg, PSB Editor, at


Connections and Education 


In this issue, we highlight a variety of efforts and 

opportunities to advance education reform on the 

national level.  It is exciting to see involvement of 

BSA members integral to many of these current 

collaborations — thank you for your important 

contributions.  A number of the national initiatives 

address the Vision and Change call to action 

to transform undergraduate biology education 

(  Other efforts aim to 

provide teaching and learning resources or to tackle 

issues that have come to the attention of the biology 

education community.  

These education efforts will continue to be all the 

richer with BSA members adding their botanical 

education expertise!  If you would like more 

information about these, get in touch.  Please also 

let us know about the initiatives you are involved in 

so we can share this information with the broader 


Digital Resource Discovery 

and Life Discovery Conference 


The Digital Resource Discovery Grant is a 

collaboration among the Ecological Society of 

America, Botanical Society of America, Society for 

the Study of Evolution, Society for Economic Botany, 

and other professional societies to support high- 

quality resources in ecology, evolution, and plant 

sciences.  The inaugural conference Life Discovery 

– Doing Science Education Conference will be held 

March 15-16, 2013 in St. Paul, Minneapolis (http://  Beverly Brown served on the 

planning committee for the 2013 conference and 

advisory panel for the collaborative grant.  Phil 

Gibson has been nominated to serve on the 2014 

Life Discovery Conference planning committee.

Understanding Evolution 

Invitation to Partner

An invitation to partner with Understanding 

Evolution (UE) ( 

was positively received by the BSA Education 

Committee in June.  Through this partnership, BSA 

members’ expertise on plant evolution can expand 

and enhance the resources that target undergraduate 

Introductory Biology. New resources include an 

interactive syllabus connecting an evolutionary 

perspective to each topic, a journal club toolkit for 

accessing the literature, an evolution misconception 

diagnostic, an Evo Gallery for student projects, 

etc.  BSA members can actively contribute to UE 

by serving as an External Advisor responsible for 

reviewing resources for both science and pedagogy, 

evaluating resources, or submitting teaching 

resources for possible inclusion in the UE database.

New Free Resource for 

Case-Based Learning

Are you looking for real-world contexts for 

your students to explore plant biology and its 

interdisciplinary connections?  An outcome of the 

PlantIT Careers, Cases and Collaborations project 

(DRL 0737669) is the e-book Problem Solving with 

Plants: Cases for the Classroom.  Download your 

free e-book at:

Problem Solving with Plants: Cases for the Class-

room  contains 14 cases adaptable from middle 

school to college classes and helps for teaching with 

investigative cases.

background image


Plant Science Bulletin 58(4) 2012

Core Concepts in 

Undergraduate Plant Biology

BSA members Judy Skog and Susan Singer 

joined with education leaders in the American 

Society of Plant Biologists to draft core concepts in 

undergraduate plant biology and circulated these 

for community feedback.  These core concepts will 

be used to guide learning objectives for 200-level 

plant biology units within the HHMI-funded 

CourseSource initiative, which will be created by 

partnerships with the National Academies Summer 

Institutes and professional societies and made 

available through a digital repository.

American Institute for 

Biological Sciences (AIBS) and 

Partner Activities

The American Institute of Biological Sciences 

(AIBS), including board member Judy Skog and 

AIBS education committee chair Muriel Poston, 

is tackling the issue of credentialing faculty that 

was raised this summer (e.g., someone with 

a PhD in botany is not considered qualified 

to teach introductory biology). AIBS will be 

developing a position statement, and president of 

HAPS Dee Silverthorn is also working with other 

societies to develop guidelines for accrediting 

organizations. We’ll continue to keep you informed 

of developments on this important issue.

The AIBS Education Committee 

is exploring the 

feasibility of developing an initiative that would 

support biology/life sciences department leaders.  

Presentations and posters from the Introductory 

Biology Project Summer Conference, led by 

Gordon Uno, are now online at  

Beth Schussler, Marsh Sundberg, and Susan 

Singer were among the presenters. Several action 

items emerged from the sessions on the role of 

professional societies and introductory biology.  A 

group will be getting together to write an article 

that features the many different successful models 

to promote education within specific scientific 

societies and ways that education organizations 

can work with scientific societies.  Two-year faculty 

would like to be able to more easily become involved 

in professional societies, and encouraged societies 

to consider new ways of welcoming them into their 

communities.  There was a call for the development 

of a common statement on the importance of 

introductory biology. 

The PULSE Vision and Change Fellows were 

announced in early September. Susan Singer is a 

PULSE mentor in this joint effort by NSF, HHMI, 

and NIH to support Leadership Fellows.  PULSE 

welcomes community involvement to help develop 

and implement systemic change in undergraduate 

life science education ( 

The AIBS is participating in an initiative 

funded by the U.S. Department of Education to 

address the big sustainability questions in our 

classrooms (understanding and engaging in 

problem solving around societal issues such as 

access to food and water, poverty reduction, and 

cleaner energy supplies).  More information about 

this “Sustainability Improves Student Learning in 

STEM” initiative is online:



Are you helping to educate for a more sustainable 

future? Help impact hundreds of thousands of 

students by infusing sustainability into textbooks 

from major publishers and get paid for your 

efforts. Textbook publishers have seen the demand 

from educators and students for sustainability- 

related materials in our discipline. We have 

been asked by major textbook publishers (e.g., 

Cengage and McGraw-Hill) to gather names of 

potential reviewers who can receive remuneration 

for suggesting ideas about how to educate for a 

sustainable future.   These ideas will be used as 

examples and themes in their textbook revisions.   

If you are interested in educating for a sustainable 

future by serving as a reviewer or subject matter 

expert, please fill out a survey at https://www.

For more information contact Susan Musante at

BSA at National Association 

of Biology Teachers 

A number of BSA members presented at 

the recent NABT Professional Development 

Conference in Dallas, TX.  Gordon Uno led 

sessions in an AP Biology Symposium. Stephen 

Saupe presented a poster on using leaf morphology 

to measure mean annual temperature in the 4-year 

college poster session.  Susan Singer and Gordon 

Uno will present in the 2012 NABT Faculty 

Professional Development Summit.  Stanley Rice 

presented on root foraging investigations for 

classrooms.   Gordon Uno and Marsh Sundberg 

background image


Plant Science Bulletin 58(4) 2012

led a special Saturday workshop on Planting 

Inquiry in Science Classrooms.  In association with 

the NABT meeting, a PlantingScience Focus Group 

meeting of teachers and mentors was held to gain 

stakeholder input.



The new student roadmap through a science project 

planned for the revised PlantingScience website will 

have helps for science practices doing science, record-

ing ideas in notebooks and sketches, presenting sci-

ence, and talking science. A graphic will be associated 

with each main support, such as this one for Arguing 

the Evidence.

PlantingScience Successes 

and Next Steps

PlantingScience is in high gear reviewing lessons 

learned from the DRK12 grant (DRL 0733280) 

to build on successes and plan next steps.  The 

online platform is currently undergoing a complete 

overhaul.  Some of the new resources include a 

student roadmap through a project and supports 

for science practices in keeping with the Next 

Generation Science Standards.  An Inquiry Task 

Force, including representatives from the American 

Society of Plant Biologists, Ecological Society of 

America, American Phytopathological Society, 

was established in the spring as a mechanism for 

partner societies to participate in new inquiry 

development.  For highlights of some successes 

and collaborative efforts, see the American 

Society for Plant Biologists’ September/October 

2012 newsletter:


Plant Blog on  

Huffington Post

Chris Martine has taken his “Plants Are Cool, 

Too!” efforts to the popular media site Huffington 

Post.  Don’t miss his blog:


background image


Editors Choice Reviews

Plant Reproduction & the Pollen 

Tube Journey – How the Females 

Lure the Males

Lorbiecke, René. 2012. The American Biology 

Teacher 74(8): 575-580.

Many of us have had students germinate pollen to 

observe pollen tube growth on a slide, but Lorbiecke 

has taken this one step further to demonstrate 

chemotaxis as the pollen tube approaches an ovule 

in this semi-in vivo assay. Rapid cycling Brassica 

(Fast Plants) flowers are the research material and 

the author provides detailed instructions, including 

a diagrammatic flow-chart of the procedure, for 

students to follow. Excellent macrophotographs 

illustrate the results. 

Do College Introductory Biology 

Courses Increase Student Ecologi-

cal Literacy? 

Cheruvelil, Kendra Spence and Xuemel Ye. 

2012. Journal of College Science Teaching 

42(2): 50-56.

Do prospective biology majors have greater 

motivation for study and more positive perception 

of environmental issues than non-majors? Yes. Do 

they have better conceptual understanding? Not 

so much. Are they more ecologically literate at the 

end of the course? Not significantly. I’m sure these 

results would be different in any of the courses we 

teach. Or would they be? Actually, for most of us, 

the results would probably be quite similar. Read 

this article and set yourself a challenge. 

background image


Ethics CORE - Can You Help?

Together with the National Science Foundation, 

Ethics CORE is working to give researchers and 

professionals easier access to ethics information 

through a new online portal.  Ethics CORE (http:// leverages its digital 

platform to bring together a novel collection of 

traditional library resources (e.g., encyclopedia, 

research articles, etc.) with new media (e.g., blogs, 

online communities and multimedia tools). The 

goal is to create a virtual space where students, 

faculty, researchers and practicing professionals 

can seamlessly receive and share information on 

everything from Authorship to Whistle-blowing.

As we seek to create a virtual hub for ethics 

information, we would very much like to solicit 

your input on the following questions:
1)    What ethics resources (articles, documents, 

books, websites, etc.) have been particularly useful 

or relevant to researchers or practitioners in your 

2)    Are there any case studies, particularly case 

studies with positive outcomes, involving ethical 

issues that might be interesting or useful to other 

members of your discipline?
The Ethics CORE team can help you connect 

with ethics resources useful to you. If you are 

aware of any gaps in the ethics resources available 

to members of your discipline, or if you need a 

digital environment to serve a need particular 

to your group, we would like to collaborate with 

you. We also hope you consider Ethics CORE as a 

mechanism for distributing your own related work.
-Megan Hayes Mahoney Visiting Digital Library 

Research Librarian, Grainger Engineering Library, 

University of Illinois at Urbana-Champaign Email:

-Gene Amberg, Ph.D Collaborations Director, 

National Center for Professional & Research Ethics, 

University of Illinois at Urbana-Champaign Email:



Each year Harvard University awards a limited 

number of Bullard Fellowships to individuals in 

biological, social, physical and political sciences to 

promote advanced study, research or integration 

of subjects pertaining to forested ecosystems. 

The fellowships, which include stipends up to 

$40,000, are intended to provide individuals in 

mid-career with an opportunity to utilize the 

resources and to interact with personnel in any 

department within Harvard University in order 

to develop their own scientific and professional 

growth. In recent years Bullard Fellows have been 

associated with the Harvard Forest, Department 

of Organismic and Evolutionary Biology and the 

J. F. Kennedy School of Government and have 

worked in areas of ecology, forest management, 

policy and conservation. Fellowships are available 

for periods ranging from six months to one year 

after September 1. Applications from international 

scientists, women and minorities are encouraged. 

Fellowships are not intended for graduate students 

or recent post-doctoral candidates. Information 

and application instructions are available on the 

Harvard Forest web site (http://harvardforest.fas. Annual deadline for applications is 

February 1. 

Position Available


Professor Bioeducation  

Position # F99418

Job Summary:  

The position is for an Assistant Professor (tenure 

track), Associate Professor (tenure track or tenure 

eligible), or Full Professor (tenure eligible) nine-

month appointment with a possible three months 

of summer support for first three years. We are 

seeking a colleague to contribute to our unique 

PhD program in Biological Education.  Preference 

will not be given to a particular rank; all applicants 

will be judged in accordance with their years of 

experience.  We seek a candidate with a Doctorate, 

with research experience in teaching and learning 

at the postsecondary level, and expertise in at least 

one biology content area sufficient to add to and 


background image


Plant Science Bulletin 58(4) 2012

•  Teaching experience at the university level
•  Ability to teach other courses in areas of need 

(e.g., molecular biology, general biology, etc.)

Salary and Benefits:

Salary and rank is commensurate with 

qualifications and experience.  Benefits available 

include health, life, and dental insurance, as well as a 

selection of several defined contribution retirement 

programs.  Dependents and spouses of UNC 

employees who are employed as 0.5 FTE or above 

are entitled to and eligible for Dependent Tuition 

Grants.  These tuition grants will cover in-state 

tuition charges.   Further requirements may exist.  

Other benefits may be available based on position.  

The position is a nine-month appointment with 

a possible additional three months of summer 

support provided by the Winchester Distinguished 

Professorship Endowment for the first three years 

to help the faculty member establish a productive 

research agenda.

Requested Start Date: August 19, 2013

Application Materials, Contact, 

and Application Deadline:  

Screening of applications will begin on 

December 3, 2012 and will continue until the 

position is filled. Interested persons should apply 

online at and select “View/

Apply for Faculty Positions” then choose “Assistant/

Associate/Full Professor – BioEducation.” 


Application documents to be submitted online are 

a letter of application/cover letter, a curriculum 

vitae, and the names and contact information of at 

least three references.  In addition to the material 

provided online, please send unofficial or official 

copies of all undergraduate and graduate school 

transcripts, a statement of research interests, a 

statement of teaching philosophy, a list of courses 

you would like to teach, and copies of published 

original research articles to: Cynthia Budde, School 

of Biological Sciences, Ross Hall, Box 92, University 

of Northern Colorado, Greeley, CO 80639.  Tel:  

970-351-2921.  email:

For questions, contact Rob Reinsvold, Chair of the 

search committee, at

Additional Requirements:  

Satisfactory completion of a background check, 

educational check, and authorization to work in the 

United States is required after a conditional offer of 

collaborate with current expertise in the school.  

The job duties include: teaching undergraduate 

lectures and laboratories in biology content area 

and graduate courses in Bioeducation and Biology; 

training graduate students emphasizing biological 

education research topics at the postsecondary 

level of teaching and learning; providing service 

for the school, college, university, and community; 

conducting research in biological education; 

applying for grants; and publishing original 

research results.  

Minimum Qualifications:

Doctorate (Ph.D. or Ed.D.) in Biology or 

Science Education (or closely related field) with 

demonstrated experience in Biological Education 


•  Evidence or potential for excellence in 

•  Demonstrated research and publication 

record in the area of teaching and learning 
•  Potential or past success securing external 

•  Ability to teach graduate courses in 

bioeducation topics and educational research 

•  Ability to teach undergraduate courses in 

some biology topic(s) that complements current 

expertise in the school
•  Potential or past experience in supervising 

research students
Preferred Qualifications:
•  Demonstrated pedagogical research at the 

collegiate level of teaching and learning
•  Ability to provide leadership with the 

pedagogical aspect of our Ph.D. program in 

Biological Education

background image


Plant Science Bulletin 58(4) 2012

employment has been made.  Original transcripts 

must be submitted at least one (1) month before the 

start date.

Location and Environment:

The University of Northern Colorado is a 

Doctoral/Research University enrolling 12,000+ 

graduate and undergraduate students.  The 

university, founded in 1889, is located in Greeley, 

Colorado, which has a growing population of 

90,000 and is situated an hour north of Denver 

and 30 miles east of the Rocky Mountains.  The 

School of Biological Sciences currently has 18 full 

time faculty members, 40 graduate students (MS, 

MBS, and PhD), and 450 undergraduate majors.  

The unique Ph.D. program in Biological Education 

specializes in training biologists to be experts in 

their disciplines and outstanding college biology 

teachers. This degree program allows the student to 

choose between an emphasis on the biology content 

or an emphasis on biology pedagogy.  Another 

strength is our long tradition of cooperative 

interactions between faculty of the Sciences and 

Education.  Further information about UNC and 

the City of Greeley is available at

Additional Information:

This position is contingent on funding from the 

Colorado State Legislature, approval by the Board of 

Trustees, and subject to the policies and regulations 

of the University of Northern Colorado.  Federal 

regulations require that the University retain all 

documents submitted by applicants.  Materials will 

not be returned or copied for applicants.

The University of Northern Colorado is an equal 

opportunity/affirmative action institution that 

does not discriminate on the basis of race, color, 

national origin, sex, age, disability, creed, religion, 

sexual orientation or veteran status.  For more 

information or issues of equity or fairness or claims 

of discrimination contact the UNC AA/EEO/Title 

IX Officer at UNC Human Resource Services, 

Campus Box 54, Carter Hall 2002, Greeley, CO  

80639, or call 970-351-2718.

Angiosperm Origins—

Monocots First?

The origin of angiosperms continues to be an 

unresolved issue, but has always been framed 

within the paradigm of seed plant monophyly. This 

is a parsimonious view, based on the improbability 

that both seed-and-pollination and cambium-and-

woody growth are likely to have evolved more 

than once. A Monocots-First scenario denies both 

assumptions and claims that angiosperms arose 

directly from a pteridophytic base and built their 

seeds independently of all other living seed plants. 

The cambium and woody growth developed later, 

during the diversification of early dicots.

A Monocots-First scenario is both falsifiable 

and has considerable explanatory power. The 

similarity of early embryology in monocots and 

pteridophytes is either a recent “reversion” or a deep 

symplesiomorphy. Genomics of early development 

should be able to verify which is correct. Because a 

tubular cambium and woody growth came later—

in the diversification of early dicots—it can explain 

“Darwin’s abominable mystery.” Woody growth 

allowed more complex branching—a platform for 

the evolution of smaller leaves that became both 

petiolate and deciduous. These, in turn, fossilize 

much more readily than herbaceous growth and 

produced the “sudden appearance” that troubled 

Darwin. Please take a look at this very different 


–William Burger, Department of Botany, Field Mu-

seum (e-mail:

Funding for Plant 

Conservation and Native Plant 

Materials Programs

Dear Plant Conservation Alliance Colleagues,

I am writing with some tentatively good news as 

well as with a request.

As you know, the Bureau of Land Management 

(BLM) has supported a modest native plant 

materials program for a number of years.  This 

program, like many federal activities, has been 

in jeopardy of reduced funding in the current 

budgetary climate.

In 2011 we were successful in obtaining 

language as part of the appropriations bill for the 

background image


Plant Science Bulletin 58(4) 2012

Department of the Interior that instructed the BLM 

to maintain a robust native plant program.  This 

language was secured, in part, through the efforts 

of the Plant Conservation Alliance NGO members 

who communicated its importance to their elected 


Earlier this year, we had some additional success 

when the report that accompanied the House 

Interior, Environment, and Related Agencies 

Appropriation Bill for FY 2013, included the 

following language:

“Native Plant Program. The Committee is 

supportive of the Bureau of Land Management’s 

existing plant conservation and native plant 

materials program and expects the Bureau to 

continue the program through resources provided 

under various accounts.  The Committee directs 

the threatened and endangered species account to 

contribute to this program.”

These two sentences express the support of the 

Committee for native plant programs and instruct 

the Bureau of Land Management to maintain the 

contribution to the program that comes through 

the funding line item for the Threatened and 

Endangered Species account.  It is imperative that 

elected officials, committee staff members and 

agency personnel are repeatedly reminded of the 

importance of funding for endangered and native 

plant materials.  If we don’t speak up for plants, no 

one else will.

This brings me to my request: Please take a 

minute to send a message to your elected officials 

regarding the importance of protecting funding 

for plant materials and native plant programs. 

Following is some suggested text:

Dear _________:

On behalf of (organization), I am contacting you 

to ask for your help in supporting funding for plant 

conservation and native plant materials programs 

through the Bureau of Land Management.

The United States has inherited a rich legacy of 

biodiversity, with native plants delivering essential 

ecosystem services such as waste purification, 

climate modulation and habitat for myriad wildlife 

and fish services across the United States.  Native 

plant communities are threatened by unsustainable 

urban and rural development, expanding energy 

production, the spread of invasive species, and 

pollution.  The United States needs to ensure that 

native plant communities are protected and that 

future generations benefit from the same legacy 

that we have inherited.

The work of the Bureau of Land Management 

(BLM) is critical to these efforts.  Funding 

provided through BLM is critical to these efforts.  

Funding provided through BLM accounts for Land 

Resources, Wildlife & Fisheries Management and 

Threatened and Endangered Species supports work 

on native plants, rare plants and addresses problems 

posed by invasive plant species.  These funds not 

only protect biodiversity, but also contribute to 

generating more science competency and green 

jobs—new scientists, ecologists and land managers.

As Congress works to finalize the Department 

of Interior’s 2013 funding, please ensure that 

resources provided for plant activities is included 

at no less that the FY12 level.  We suggest including 

the following language with the Bureau of Land 

Management Appropriation:

“Native Plant Program. The Committee is 

supportive of the Bureau of Land Management’s 

existing plant conservation and native plant 

materials program and expects the Bureau to 

continue the program through resources provided 

under various accounts.  The Committee directs 

the threatened and endangered species account to 

contribute to this program.”

Contacting Congress:

You can find your Senators by visiting www. and following the “Find your Senators” 

dropdown in the upper right corner.  Or, if you 

want to call and know the name of your Senator, 

you can call the Capitol switchboard at 202-224-

3121 and ask to be connected to their office.

You can find your Representatives by visiting and entering your service area zip 

code(s) in the upper left corner.  Or if you know 

the name of your Representative, you can call the 

Capitol switchboard at 202-224-3121 and ask to 

be connected to his or her office.  Once connected 

to the Congressional office, please ask for the staff 

handling appropriations for the Department of 

Sophia Siskel, President & CEO, Chicago Botanic 

Garden, ssiskel@chica-, 847-835-8351     

background image


Plant Science Bulletin 58(4) 2012

Hunt Institute Receives 

National Film Preservation 

Foundation Grant

(PITTSBURGH, PA)—Hunt Institute for 

Botanical Documentation has been awarded 

preservation project funding from the National 

Film Preservation Foundation (NFPF) to preserve 

Walter Hodge’s film of Peru in the 1940s. The award 

will be used to clean, conserve and make both a film 

copy for preservation and a digital copy for access.

Walter Henricks Hodge began his botanical 

career in 1934 as a graduate teaching assistant at 

Massachusetts State College. Eventually his resume 

included time on the faculties of the University 

of Massachusetts, the Universidad Nacional de 

Colombia and Harvard University and service 

in governmental and scientific organizations, 

including the United States Department of 

Agriculture and the National Science Foundation. 

Hodge traveled extensively, including periods in 

the West Indies, Peru, Colombia and Japan, which 

provided him with ample opportunities to indulge 

his interest in photography. His photographic work 

illustrates practical and economic uses of plants 

throughout the world and records not only a large 

variety of plant species, but also informal portraits 

of botanists he encountered in his travels. Hodge’s 

still photographs have been published in various 

United States Department of Agriculture bulletins, 

National Geographic and the Christian Science 

Monitor. From 1943 to 1945 he was a botanist for 

the United States Office of Economic Warfare’s 

Cinchona Mission in Lima, Peru, and the film we 

will preserve is a result of this assignment.

The purpose of the Cinchona Mission was to 

find reliable alternate sources of cinchona bark 

for the wartime production of quinine. The 

footage is a unique collection of material relating 

not only to Hodge’s botanical mission, but also 

to his interests in the local culture and customs 

of Peru. Sequences include shots of local scenery 

(including Macchu Picchu) and anthropologically 

interesting material relating to native lives and 

customs (including sequences in local street 

markets and at a bullfight). Hodge’s wife Barbara 

(1913–2009) traveled with him and can frequently 

be seen in the footage, occasionally acting as a 

model for close studies of textiles and jewelry. 

Finally, Hodge did not neglect his central work 

assignment; he included a sequence covering the 

entire process of the harvesting and preparation 

of cinchona bark. The film quality and color are 

Walter Hendricks Hodge with his personal Cine-

Kodak Special 16mm camera, which was used 

to create his film of Peru that will be preserved 

with the grant funds, 1944, Miraflores, Lima 

Peru, HI Archives portrait no. 94.  Photo by 

Barbara Taylor Hodge.  (c 2012 Hunt Institute for 

Botanical Documentation.  All rights reserved) 

excellent, and it is our feeling that this material will 

interest botanists, anthropologists and historians.  

Hunt Institute has had a long relationship with 

Hodge, which began when Founding Director 

George H. M. Lawrence (1910–1978) proposed that 

Hodge take informal portraits of botanists. Over 

the years Hodge has sold or donated thousands of 

photographs to the Hunt Institute Archives. We 

also hold 27 linear feet of Hodge’s professional and 

personal correspondence and research.

The NFPF grant application process was 

undertaken by Hunt Institute Archivist Angela L. 

Todd with the assistance of Jeffrey A. Hinkelman, 

video collection manager and course instructor 

at Carnegie Mellon’s University Libraries, and 

Hannah Rosen, preservation programs specialist at 

Preservation Technologies in Cranberry Township, 


The Hunt Institute for Botanical Documentation, 

a research division of Carnegie Mellon University, 

specializes in the history of botany and all aspects of 

plant science and serves the international scientific 

community through research and documentation. 

To this end, the Institute acquires and maintains 

authoritative collections of books, plant images, 

manuscripts, portraits and data files, and provides 

publications and other modes of information 

service. The Institute meets the reference needs of 

background image


Plant Science Bulletin 58(4) 2012

botanists, biologists, historians, conservationists, 

librarians, bibliographers and the public at large, 

especially those concerned with any aspect of the 

North American flora.

Hunt Institute was dedicated in 1961 as the 

Rachel McMasters Miller Hunt Botanical Library, 

an international center for bibliographical 

research and service in the interests of botany 

and horticulture, as well as a center for the study 

of all aspects of the history of the plant sciences. 

By 1971 the Library’s activities had so diversified 

that the name was changed to Hunt Institute for 

Botanical Documentation. Growth in collections 

and research projects led to the establishment 

of four programmatic departments: Archives, 

Art, Bibliography and the Library. The current 

collections include approximately 30,150 book and 

serial titles; 29,000+ portraits; 29,270 watercolors, 

drawings and prints; 243,000+ data files; and 

2,000 autograph letters and manuscripts. The 

Archives specializes in biographical information 

about, portraits of and handwriting samples 

from scientists, illustrators and all others in the 

plant sciences. The Archives is a repository of 

alternate resort and as such has collected over 300 

institutional and individual archival collections 

that may not have otherwise found an easy fit at 

another institution. Including artworks dating from 

the Renaissance, the Art Department’s collection 

now focuses on contemporary botanical art and 

illustration, where the coverage is unmatched. The 

Art Department organizes and stages exhibitions, 

including the triennial International Exhibition 

of Botanical Art & Illustration. The Bibliography 

Department maintains comprehensive data files on 

the history and bibliography of botanical literature. 

Known for its collection of historical works on 

botany dating from the late 1400s to the present, the 

Library’s collection focuses on the development of 

botany as a science and also includes herbals (eight 

are incunabula), gardening manuals and florilegia, 

many of them pre-Linnaean. Modern taxonomic 

monographs, floristic works and serials as well as 

selected works in medical botany, economic botany, 

landscape architecture and a number of other 

plant-related topics are also represented.

Impulsive micromanagers 

help plants to adapt, survive

EAST LANSING, Mich. — Soil microbes are 

impulsive. So much so that they help plants face the 

challenges of a rapidly changing climate.

Jen Lau and Jay Lennon, Michigan State University 

biologists, studied how plants and microbes work 

together to help plants survive the effects of global 

changes, such as increased atmospheric CO

concentrations,  warmer temperatures and altered 

precipitation patterns. The results, appearing in the 

current issue of the Proceedings of the National 

Academy of Sciences, showed that microbes in the 

ground not only interact with plants, but they also 

prompt them to respond to environmental changes.

“We found that these changes in the plants 

happen primarily because of what global changes 

do to the below ground microbes rather than the 

plant itself,” said Lau, who works at MSU’s Kellogg 

Biological Station. “Drought stress affects microbes, 

and they, in turn, drive plants to flower earlier and 

help plants grow and reproduce when faced with 


The team conducted a multi-generational 

experiment that manipulated environmental 

factors above and below ground while paying close 

attention to the interaction between the plants 

and microbes in the soil. Close examination of 

this particle partnership revealed some interesting 


Researchers already knew that drought stress 

reduced plant growth and altered their life cycle. 

The team was surprised, though, to observe that the 

plants were slow to evolve and, instead, microbes 

did most of the work of helping plants survive in 

new, drier environments. This happened because 

the microbes were quick to adapt to the changing 


This newfound aspect of their relationship 

gives plants an additional strategy for survival, 

Lau said. “When faced with environmental 

change  plants may not be limited to traditional 

‘adapt or migrate’ strategies,” she said. “Instead, 

they may also benefit from a third approach—

interacting with complementary species such 

as the diverse microbes found in the soil.”

background image


Plant Science Bulletin 58(4) 2012

“If you look at engineering materials, we have 

lots of different types, thousands of materials that 

have more or less the same range of properties as 

plants,” Gibson says. “But here the plants are, doing 

it by arranging just four basic constituents. So 

maybe there’s something you can learn about the 

design of engineered materials.”

A paper detailing Gibson’s findings  has been 

published this month  in the  Journal of the Royal 

Society Interface.

To Gibson, a cell wall’s components bear a close 

resemblance to certain manmade materials. For 

example, cellulose, hemicellulose and lignin can 

be as stiff and strong as manufactured polymers. 

A plant’s cellular arrangement can also have 

engineering parallels: cells in woods, for instance, 

are aligned, similar to engineering honeycombs, 

while polyhedral cell configurations, such as those 

found in apples, resemble some industrial foams.

To explore plants’ natural mechanics, Gibson 

focused on three main plant materials: woods, 

such as cedar and oak; parenchyma cells, which are 

found in fruits and root vegetables; and arborescent 

palm stems, such as coconut trees. She compiled 

data from her own and other groups’ experiments 

and analyzed two main mechanical properties in 

each plant: stiffness and strength.

Among all plants, Gibson observed wide variety 

in both properties. Fruits and vegetables such as 

apples and potatoes were the least stiff, while the 

densest palms were 100,000 times stiffer. Likewise, 

apples and potatoes fell on the lower end of the 

strength scale, while palms were 1,000 times 


“There are plants with properties over that 

whole range,” Gibson says. “So it’s not like 

potatoes are down here, and wood is over there, 

and there’s nothing in between. There are plants 

with properties spanning that whole huge range. 

And it’s interesting how the plants do that.” 

It turns out the large range in stiffness and 

strength stems from an intricate combination of 

plant microstructures: the composition of the 

cell wall, the number of layers in the cell wall, the 

arrangement of cellulose fibers in those layers, and 

how much space the cell wall takes up

In trees such as maples and oaks, cells grow and 

multiply in the cambium layer, just below the bark, 

increasing the diameter of the trees. The cell walls 

in wood are composed of a primary layer with 

Jen Lau, MSU biologist studied how plants and mi-

crobes work together to help plants survive the effects 

of global changes. Photo courtesy of MSU.

Lau and Lennon’s research is funded in part by 

MSU AgBioResearch.
Contact: Layne Cameron, Media 

Communications, Office: (517) 353-8819, Layne.; Jen Lau, Kellogg 

Biological Station, Office: (269) 671-5117, jenlau@</a>

Plants exhibit a wide range 

of mechanical properties, 

engineers find

Biological structures may help 

engineers design new materials.

CAMBRIDGE, Mass. — From an engineer’s 

perspective, plants such as palm trees, bamboo, 

maples and even potatoes are examples of precise 

engineering on a microscopic scale. Like wooden 

beams reinforcing a house, cell walls make up the 

structural supports of all plants. Depending on how 

the cell walls are arranged, and what they are made 

of, a plant can be as flimsy as a reed, or as sturdy 

as an oak.

An MIT researcher has compiled data on the 

microstructures of a number of different plants, 

from apples and potatoes to willow and spruce 

trees, and has found that plants exhibit an enormous 

range of mechanical properties, depending on the 

arrangement of a cell wall’s four main building 

blocks: cellulose, hemicellulose, lignin and pectin.

Lorna Gibson, the Matoula S. Salapatas Professor 

of Materials Science and Engineering at MIT, says 

understanding plants’ microscopic organization 

may help engineers design new, bio-inspired 


background image


Plant Science Bulletin 58(4) 2012

cellulose fibers randomly spread throughout it. 

Three secondary layers lie underneath, each with 

varying compositions of lignin and cellulose that 

wind helically through each layer.

Taken together, the cell walls occupy a large 

portion of a cell, providing structural support. 

The cells in woods are organized in a honeycomb 

pattern — a geometric arrangement that gives 

wood its stiffness and strength.

Parenchyma cells, found in fruits and root 

vegetables, are much less stiff and strong than 

wood. The cell walls of apples, potatoes and carrots 

are much thinner than in wood cells, and made up 

of only one layer. Cellulose fibers run randomly 

throughout this layer, reinforcing a matrix of 

hemicellulose and pectin. Parenchyma cells have 

no lignin; combined with their thin walls and 

the random arrangement of their cellulose fibers, 

Gibson says, this may explain their cell walls’ 

low stiffness. The cells in each plant are densely 

packed together, similar to industrial foams used in 

mattresses and packaging.

Unlike woody trees that grow in diameter 

over time, the stems of arborescent palms such 

as coconut trees maintain similar diameters 

throughout their lifetimes. Instead, as the stem 

grows taller, palms support this extra weight by 

increasing the thickness of their cell walls. A cell 

wall’s thickness depends on where it is along a 

given palm stem: Cell walls are thicker at the base 

and periphery of stems, where bending stresses are 


Gibson sees plant mechanics as a valuable 

resource for engineers designing new materials. 

For instance, she says, researchers have developed a 

wide array of materials, from soft elastomers to stiff, 

strong alloys. Carbon nanotubes have been used to 

reinforce composite materials, and engineers have 

made honeycomb-patterned materials with cells 

as small as a few millimeters wide. But researchers 

have been unable to fabricate cellular composite 

materials with the level of control that plants have 


“Plants are multifunctional,” Gibson says. “They 

have to satisfy a number of requirements: mechanical 

ones, but also growth, surface area for sunlight and 

transport of fluids. The microstructures plants have 

developed satisfy all these requirements. With the 

development of nanotechnology, I think there is 

potential to develop multifunctional engineering 

materials inspired by plant microstructures..”

Karl Niklas, a professor of plant biology at 

Cornell University, says Gibson’s engineering 

parallels are fitting. Plants, in a way, he says, are 

“largely structural things … chemical factories that 

are architecturally arranged.”

“Plants on Earth have evolved over three-and-a-

half billion years, and that is a giant evolutionary 

experiment of trial and error, because the things 

that don’t work are extinct, and the things that do 

work are more abundant,” Niklas says. “We can 

learn things from nature and apply it to construct 

better panel boards, styrofoams and photovoltaics 

that will help society.”

Triage for plants: NYBG 

scientists develop and test 

rapid species conservation 

assessment technique

To speed up the process of identifying threatened 

and endangered plant species, a team of New 

York Botanical Garden scientists has developed a 

streamlined method for evaluating the conservation 

status of large numbers of plant species, using 

information from plant research collections and 

Geographic Information Systems technology.

Faced with such threats as deforestation, 

climate change, and invasive species, a significant 

proportion of the world’s plant species are 

commonly believed to be in serious decline and 

possibly headed toward extinction. For government 

officials, non-governmental organizations, and 

anyone working to preserve biodiversity, knowing 

which species are most at risk is a critical piece of 

information, but the conservation status of only 

a fraction of the world’s plant species has been 


The rapid assessment method developed by 

Botanical Garden scientists uses the geographic 

range of a species as an indicator of its vulnerability. 

Sorting through thousands of species, the 

process identifies which ones are widespread in 

a region—and thus not in any immediate risk—

and which have restricted ranges, making them 

more susceptible to extinction when faced with 

environmental problems.

“The lack of a comprehensive list of threatened 

and endangered species is one of the greatest 

impediments to the effort to preserve plant 

biodiversity,” said James S. Miller, Ph.D., the 

Garden’s Dean and Vice President for Science 

and the lead author of the paper that outlines 

background image


Plant Science Bulletin 58(4) 2012

the method and the results when it was tested on 

Puerto Rico’s native plant species. “Having a more 

efficient system for assessing threats means that we 

can quickly focus conservation efforts on priority 

areas and species that need the most attention.”

Using the Garden’s streamlined assessment 

process could make it possible for the conservation 

community to meet a key target of the Global 

Strategy for Plant Conservation (GSPC), which 

calls for an assessment of the conservation status 

of all known plant species by 2020. (The GSPC is 

a product of the 1992 Convention on Biological 

Diversity, an international treaty that calls for 

the conservation and sustainable use of Earth’s 


Currently, the standard conservation assessment 

method is the one created by the International 

Union for the Conservation of Nature (IUCN) for its 

Red List, which since 1994 has used a scientifically 

rigorous, multicriteria process that assigns a species 

to such categories as “extinct,” “least concern,” 

“endangered,” and “critically endangered.”

Red List assessments have been completed for 

large groups of animal species—birds, mammals, 

and amphibians—but so far, fewer than 15,000 

plant species have been evaluated under the Red 

List process, in part because the procedure requires 

more data than is readily available for many species. 

According to Dr. Miller, there are approximately 

300,000 known plant species, but many more 

remain to be discovered.

In designing a simpler process for evaluating 

plant species, Dr. Miller and his colleagues decided 

to assign species to only two categories: “At Risk” 

or “Not at Risk.” The key criterion for determining 

a species’ status was the size of its geographical 

range, or extent of occurrence (EOO). Under one 

of IUCN’s criteria, a species with an EOO of more 

than 20,000 square kilometers (about 7,700 square 

miles, slightly smaller than the state of New Jersey) 

is considered not threatened, so that became the 

cutoff for determining whether a species would be 

categorized as At Risk or Not At Risk.

The Garden’s scientists tested their approach by 

evaluating the 2,025 species of seed plants native to 

Puerto Rico, which was chosen because its plants 

are well documented in research collections. Data 

for the study came from the Global Biodiversity 

Information Facility, an international, open-access 

resource, and from the Garden’s C.V. Starr Virtual 

Herbarium, a repository of digitized information 

about more than 1.6 million plant specimens.

As described in the team’s paper in a recent 

issue of the scientific journal Biodiversity and 

Conservation, the assessment consisted of two 

stages. An initial evaluation of the plant data 

determined that 1,476 species had ranges of more 

than 20,000 square kilometers and were classified as 

Not at Risk. Focusing on the remaining 549 species, 

the Garden scientists added more precise latitude 

and longitude references for the locations where 

many of the species samples had been collected. 

After recalculating their ranges, the team was able 

to determine that 90 additional species could be 

categorized as Not at Risk.

That means, however, that 459 species, or 23 

percent of Puerto Rico’s flora, should be considered 

At Risk. The analysis of more than 2,000 species 

took less than four months.

To test the method’s reliability, the Garden 

scientists compared their results with the Red List, 

which has assessed only 77 species of Puerto Rican 

seed plants, assigning 53 to threatened categories. 

The Garden’s rapid assessment process categorized 

47 of the 53 species on the Red List as At Risk.

In addition to Dr. Miller, the Garden team 

consisted of Brian Boom, Ph.D., Director of the 

Garden’s Caribbean Biodiversity Program; Holly 

A. Porter-Morgan, Ph.D.; Hannah Stevens; James 

Fleming; and Micah Gensler.

The  Biodiversity and Conservation paper also 

describes a second rapid assessment method 

developed by the Smithsonian Institution, which 

categorized 367 species as At Risk. It overlapped 

with the Red List for 42 out of 53 species.

Beyond identifying a broad range of threatened 

species, the two methods could serve as valuable 

planning aids, the authors conclude. “The tools used 

to conduct these analyses can also map distributions 

of ‘At Risk’ species and identify specific geographic 

places where threatened plants are concentrated,” 

they write. “The places thus identified may be 

considered priority areas for conservation and 

possible candidate areas for protected status.”

background image


Reports and Reviews

Developmental and Structural 

Floral Diagrams. An Aid to Under-

standing Flower Morphology and 


Louis P. Ronse de Craene. 

2010. ISBN 978-0-521-72945-1

Paperback, $63.00 (£37.00); 441 pp.

Cambridge University Press, Cambridge, 


Making floral diagrams—diagrams that show 

the spatial relationship of the various parts of the 

flower—is an excellent way for student, teacher, 

and researcher alike to understand how a flower is 

put together. However, it is somewhat of a lost skill, 

and Ronse de Craene rectifies this in this profusely 

illustrated book. The various parts of a flower are 

discussed in an introductory chapter, and then we 

turn to a justification for making floral diagrams; 

a brief introduction to the floral diagrams follows. 

(Keep a bookmark in p. 52, where the symbols used 

in the diagrams are explained.) A brief statement 

of the systematic significance of floral diagrams 

follows, which he returns to in the conclusion, 

and a glossary and two indices are also included. 

The bulk of the book consists of floral diagrams of 

over 150 families. There is sometimes more than 

one example per family, and always discussion 

explaining the diagrams to put them in the general 

context of the floral variation in the family to 

which they belong. Floral formulae are given for 

each species illustrated, as well as a general floral 

formula for the family as a whole.

The classic study that uses floral diagrams is A. W. 

Eichler’s Blütendiagramme Konstruiert und Erläutert 

of 1875-78, which has been digitized.  Ronse de 

Craene’s diagrams are much more elaborate that 

those of Eichler, sometimes showing relationships 

between parts at different levels in the flower, or 

at different times during development. Indeed, as 

he claims in the introduction, “the information 

contained in floral diagrams is potentially immense 

and replaces complex descriptions.” Although 

a vast amount of information is summarized in 

individual diagrams, the typographic result can be 

like a Rorschach inkblot. However, if floral diagrams 

cannot replace text, they are still an invaluable aid 

in understanding the relationships between parts. 
The book is generally clearly written, although some 

terms are confusing. Members of the important 

positional term pairs ventral/dorsal, adaxial/

abaxial, and posterior/anterior seem to be used 

randomly and are not even all in the glossary (but see 

p. 53); the term pherophyll is sometimes mentioned, 

but does no “work” at all. On the other hand, Ronse 

de Craene reasonably opts to use the term disc for 

some nectaries; if its use were precluded because it 

referred to non-homologous structures (whatever 

that might mean), the botanical lexicon would have 

to be expanded drastically to cope. 
A few points I noted as I read through the book: 

Perianth members are distinguished in the 

diagrams by their appearance; even if the perianth 

is biseriate, no convention is used to distinguish 

between the two whorls. Rather surprisingly, all the 

perianth members of Symphonia and of Calycanthus 

are shown as being sepaloid. The flowers of families 

like Taccaceae, Hydrocharitaceae, and Araceae 

Developmental and Structural

Floral Diagrams. An Aid to Understanding Flower Morphology and Evolution  ..........169


Plant Metabolomics. Methods and Protocols.  ...............................................................170


Flora of Tropical East Africa: Solanaceae ....................................................................  172

Flora Zambesiaca, 12(1) Araceae (including Lemnaceae) .............................................173

Sarraceniaceae of the Americas ..................................................................................... 173

Tropical Plant Collecting: From the Field to the Internet...............................................175

Aldrovanda: The Waterwheel Plant. ...............................................................................176

background image


Plant Science Bulletin 58(4) 2012

are drawn with the odd member of outer whorl 

in the adaxial position, the unusual position for 

monocots, but this is not discussed in the text. 

Galphimia is drawn with the only nectary glands 

of the flower being adaxial in position and on the 

bracteoles/prophylls, although in G. brasiliensis, 

there may be sepal glands as well, and both secrete 

oils (Castro et al., 2001, not cited).  
Explicating inflorescence morphology is not a 

major goal of this book. However, in families 

such as Smilacaceae, Myrtaceae, Myristicaceae, 

Amborellaceae, Ranunculaceae, and Calycanthaceae, 

“bract” structures appear in odd places in the diagrams, 

or different flowers in the one inflorescence are shown 

with different orientations. Ronse de Craene refers 

to, but does not explain, European and American 

traditions in the use of floral formulae.  As with 

the floral diagrams, the general floral formulae for 

families can be complex and difficult to understand 

readily. Recent efforts to make such formulae more 

widely used (Prenner et al., 2010) have tended 

toward the same result; less can be better. And, 

although this was probably an editorial decision, 

may I protest about the use of “et al.” references 

when the bibliography is arranged alphabetically by 

the name of the second author? This is now quite a 

common practice, but when somebody has been as 

prolific as Ronse de Craene himself, life becomes 
quite difficult!
Problems like these are minor and can be fixed 

in the next edition. Like the author, I think floral 

morphology has much to offer systematists today. 

A better understanding of floral morphology 

would surely enliven that all-too-large subset of 

papers on phylogeny that seem to have sworn off 

looking closely at flowers, or at any other aspects 

of the morphology or anatomy of the plant, for 

that matter. Floral diagrams and formulae are great 

teaching tools in any plant diversity class. I still 

remember with pleasure the Diploma in Taxonomy 

I took at Edinburgh. I went out into the gardens 

and greenhouses at lunch to get flowers of different 

families; for each, I drew a longitudinal section, and 

made a floral diagram and floral formula. It was a 

great way to learn.

Literature Cited


M. E. 2001. Structure and ultrastructure of 

leaf and calyx glands in Galphimia brasiliensis 

(Malpighiaceae).  American Journal of Botany 

88: 1935-1944.


P. J. 2010. Floral formulae updated for routine 

inclusion in formal taxonomic descriptions. 

Taxon 59: 241-250.

–P. F. Stevens, Missouri Botanical Garden and the 

University of Missouri at St Louis, St Louis, Mis-

souri 63110 USA


Plant Metabolomics. Methods and 


Hardy, Nigel W. and Hall, Robert D. (Editors) 

2012. ISBN 978-1-61779-593-0, 

(Cloth US$139.00) 340 pp. Humana Press, 

333 Meadowlands Parkway, Secaucus, NJ 


 Recent developments in technology, research 

and computing machinery along with the new 

horizons in the sciences also presents challenges for 

the plant sciences. An area witnessing rapid growth 

in research interest is the field of plant molecular 

biology, which integrates both general and applied 

science, focusing on monitoring, screening and 

profiling molecular behavior in plant cells and 

cellular systems. One branch of plant molecular 

biology is metabolomics, which utilizes technology 

aimed at obtaining a qualitative and quantitative 

overview of plant metabolites. This research 

domain is highly innovative and complex, and the 

empirical results have many potential applications 

in applied botany, crop science, horticulture, food 

technology, nutrition and the pharmaceutical 

industry. Research on metabolomics is very active. 

According to the Science Citation Index (SCI), the 

keywords “plant metabolomics” yielded a total of 

850 papers published up to August 2012  in high-

ranking scientific journals worldwide. During July-

August 2012 alone,  more than 15 new papers were 

published. This means that the research potential 

in the field is strong, with new results continually 

coming up for scientific debate. Important current 

topics include the research methods and protocols 

used and problems relating to their future 

The book “Plant Metabolomics. Methods and 

Protocols” is fresh in ideas and a useful manual for 

scientists, researchers, scholars, students and the 

wider readership interested in plant metabolism 

and metabolite molecules. The authors represented 

background image


Plant Science Bulletin 58(4) 2012

in the book are scientists active in the EU project 

META-PHOR and the book´s editors are N. W. 

Hardy and R. D. Hall. The purpose of this volume is 

to provide information on basic practical questions 

concerning experimental work with metabolomics. 

The book is divided into three parts (Material 

preparation, Chemical analysis approaches, Data 

analysis) comprising 18 chapters and explains the 

terms and concepts used in the field. Chapter 1 

describes the practical setting up of a metabolomics 

experiment, with information on data pre-

processing, metabolite identification, data analysis 

and data reporting. Chapter 2 focuses on questions 

of experimental design in plant metabolomics 

experiments and gives guidelines on the growth of 

plant material. This chapter also describes various 

philosophical and historical aspects of plant 

empirical experimentation from Ptolemy, trough 

Copernicus, and Bacon to Fisher. Observations are 

also made and on omics experiments and provides 

a detailed checklist of factors on starting a plant 

metabolomic experiment. Chapter 3 describes 

an approach to the co-cultivation of Arabidopsis 

cell cultures and bacterial plant pathogens to 

assess dual metabolomics. The Arabidopsis cell 

cultures, bacterial strains, nutrients, chemicals, 

antibiotics and the equipment needed are 

presented in detail. The methods appropriate for 

such an experiment are also described along with 

practical recommendations touching research of 

this kind. The dual metabolomic approach could 

be adapted to investigate fungal-plant interactions. 

In chapter 4, the authors recommend various 

precautions in the preparation and handling of 

samples from crop plants, and in chapter 5 the 

methods and material for tissue preparation using 

Arabidopsis are presented. This chapter ends the 

Part I (chapters 2-5), which mainly focuses on the 

preparation of material in metabolomics research, 

mostly with Arabidopsis as a model plant, and on 

pathogens. Research experience, methodology and 

the appropriate laboratory routines are presented. 

However, a critical reader of the book may be 

surprised at the absence of any consideration of 

metabolomics in the context of plant-herbivore 

interactions or of ecological aspects of symbiotic 

and antagonistic interactions, or plant signaling. 

Moreover, no empirical indication of the scientific 

reliability of the methods described in this part of 

the book is given, while the sources reveal a certain 

degree of bias.  
Part II presents chemical analytical approaches 

used in metabolomic research. Chapter 6 is 

illuminating on solid phase micro-extraction in 

natural volatile components in melon and rice 

using gas chromatography-mass spectrometry 

(GC-MS), and chapter 7 on GC-MS materials 

and methods for profiling primary metabolites 

of tomato fruit. Materials and methods for the 

use of high-perfomance liquid chromatography 

coupled to mass spectrometry (HPLC-MS) in 

metabolomics of the plant family Brassicaceae are 

described in detail in the following chapter. This 

description is followed by typical chromatographs 

and their interpretation, and by the practical 

recommendations for conducting research of this 

kind. Chapter 9 contains a detailed presentation 

of tomato metabolite analysis by ultraperfomance 

liquid chromatography (UPLC), and chapter 

10 describes high precision measurement and 

fragmentation analysis for metabolite identification. 

All the materials, methods, equipment and 

standards used in such investigations are presented 

in depth. Similarly, the succeeding chapters 

describe Fourier transform ion cyclotron resonance 

mass spectrometry (FT-ICR) for plant metabolite 

profiling and identification (chapter 11), the use 

of nuclear magnetic resonance (NMR) and flow 

injection electrospray mass spectrometry (FI-ESI-

MS)  for metabolomics research in Brassicaceae 

(chapter 12), and the spectroscopy research 

protocols of trace element content and speciation 

in cereal grains (chapter 14).  The Part II ends 

with chapter 14, describing the use of genomics 

and metabolomics methods to quantify fungal 

endosymbiots and alkaloids in grasses. A very 

detailed presentation of the methods and the 

interpretations of chromatograms greatly help 

the reader to understand the procedures. Part II 

(chapters 6-14) of the book is chemical in character 

and shows the practices and challenges of research 

in metabolomes.  As metabolomes constitute an 

extremely large field with very diverse groups of 

molecules, the chemical methods used must be 

considered case by case. The examples presented in 

part II are very useful for this purpose. Moreover, 

readers of the book will benefit from the fact that 

the methods with many physical and technical 

parameters and terms of high technology are 

presented simply and intelligibly. 
Part III of the book (chapters 15-18) describes 

data analysis, data interpretation and accuracy 

estimation. Chapter 15 describes the processing of 

nominal and accurate mass LC-MS or GC-MS data 

using the MetAlign software package, and chapter 

16 focuses on the methods for the fingerprinting 

background image


Plant Science Bulletin 58(4) 2012

and profiling of metabolome chromatography 

data. TagFinder software is presented. The 

chemical identification strategies using liquid 

chromatography-photodiode array-solid-phase 

extraction-nuclear magnetic resonance-mass 

spectrometry (LC-PA-SPE-NMR) are discussed 

in chapter 17. Part III concludes with chapter 18, 

which details a strategy for selecting data mining 

techniques in metabolomics.  It is stated that the 

development of metabolomics depends not only 

on advances in techniques of chemical analysis but 

also on advances in computing and data analysis 

Overall, the book presents methods and protocols 

relating to all the stages of accurate plant 

metabolomics workflow, which is the foundation 

for innovative and prospective research worldwide. 

The book is a mix between a scientific treatise and a 

laboratory manual. As such it is an excellent one. It 

is also a good example of how a difficult and multi-

complex matter can be presented simply. On the 

other hand, the book does not give answers to all 

the questions connected with plant metabolomics 

research and its quality. A more critical approach 

to the methods and protocols described and 

recommended could serve as fruitful basis for 

discussion, leading to more rapid analytical 

progress in the field. In its present form, the book 

hints at this opportunity, but clearly transfers this 

responsibility to the reader. Moreover, the use of 

different referencing styles in different chapters, 

and a rather routine style in the presentation of 

the data, and other small defects which, while 

they do not interfere with the reading of this book, 

can, from the formal point of view, be considered 

as minor blemishes. In sum, this is a most useful 

volume, which helps in separating the inseparable 

and measuring the un-measurable.
-Prof. Dr. Tadeusz Aniszewski, Research and Teach-

ing Laboratory of Applied Botany, Biological Inter-

actions and Ecological Engineering, Department 

of Biology, University of Eastern Finland, Joensuu 

Campus, Finland


Flora of Tropical East Africa: Sola-


Edmonds, Jennifer M., with contributions by 

Maria S. Vorontsova and Sandra Knapp.

2012. ISBN 978-1-84246-395-6

Paper, US$51.85; 240 pp. + 4 unnumbered 

pages of back matter

Royal Botanic Gardens, Kew, Richmond, Sur-

rey TW9 3AB, UK;

The publication history of this series dates from 

1952.  The final part appeared in early 2012, and 

whether this treatment of Solanaceae is in fact 

the final part is not explicitly stated, but one 

suspects it is.  (There are no “Forthcoming Titles 

in Production” listed in the back matter.) Tropical 

East Africa is here defined as the modern states of 

Kenya, Uganda, and Tanzania, excluding Rwanda 

and Burundi on the west.
Commendably, the authors present an artificial 

key to all genera represented in the flora area, even 

those only represented by cultivated plants.  The 

taxonomic treatments are enriched by remarks on 

folk uses of some species, including folk medicine.  

Nearly every genus is accompanied by one or more 

full-page drawings, all of which are original to this 

There are extensive discussions of generic limits, 

where necessary.  In the treatments of the individual 

species, the authors cite a very full synonymy 

and often digress into extended discussions of 

typification, encompassing even some species that 

are not native to Africa.  The work is therefore 

important far beyond its stated coverage.
There is what might be called a “companion 

piece” to this volume:  Edmonds, J. M. 2005. The 

Solanaceae in the Flora of Tropical East Africa,  pp. 

157-196 in A Festschrift for William G. D’Arcy.  

Monographs in Systematic Botany No. 104.  In this 

contribution, which includes a goodly array of full-

page illustrations, the stated intention was that the 

formal treatment of the Solanaceae would appear 

in 2005.  A delay of seven years may well be due 

to unanticipated difficulties in finishing the work, 

especially the knotty problems presented by often-

weedy species of Solanum, where all manner of 

trivial variants have been named in the literature, 

many of them without preserved types.  I counted 

background image


Plant Science Bulletin 58(4) 2012

general pattern throughout the series, not peculiar 

to just this treatment.
The genera and species are all accompanied by 

complete citations of protologs and typification.  

The literature citations are conventionally 

abbreviated.  Chromosome numbers are nowhere 

mentioned, probably because the authors and 

editors recognize that chromosome numbers have 

no place in a regional flora.
As best one can tell, from the listing given in 

the back matter just after p. 54, the Cyperaceae, 

Asclepiadaceae, and Commelinaceae are the major 

elements yet to appear in this monumental effort.
-Neil A. Harriman, Biology Department, University 

of Wisconsin-Oshkosh, Oshkosh, Wisconsin 54901 


Sarraceniaceae of the Americas.

Sarraceniaceae of South America. 

McPherson, Stewart, Andreas Wistuba, An-

dreas Fleischmann, and Joachim Nerz. 2011. 

ISBN 978-0-9558918-7-8 (cloth, $89.99). 566 

pp. Redfern Natural History Productions, 

Dorset, England. www.redfernnaturalhis- 

Sarraceniaceae of North America. 

McPherson, Stewart and Donald Schnell 

2011. ISBN 978-0-9558918-6-1 (cloth, 

$89.99). 810 pp. Redfern Natural History 

Productions, Dorset, England. www.redfern- 

These two volumes are a much expanded volume 

of Stewart McPherson’s 2007 book, Pitcher Plants 

of the Americas (reviewed in PSB 53: 176-177). 

Combined, the two new volumes are more than 

1000 pages longer than Pitcher Plants of the 

Americas and they present many more gorgeous 

photographs of pitcher plants and their habitats. 

Unfortunately they add little new scientific value, 

and most critically, they neglect much recent 

literature and add much confusion to the taxonomy 

of Sarraceniaceae.
The two new Sarraceniaceae volumes are intended 

as a set. Sarraceniaceae of South America has 

chapters introducing both carnivorous plants 

and the family, and provides an overall broader 

context for looking at pitcher plants of the Western 

23 species-level synonyms just for Solanum 

aethiopicum L., a widely cultivated food plant, 

and these are only the binomials in common use 

or based on African types; the reader is referred to 

a Solanaceae Source website for even more details.
The sometimes-cryptic abbreviations for literature 

citations throughout the work are explained on an 

unnumbered page just after p. 240.
-Neil A. Harriman, Biology Department, University 

of Wisconsin-Oshkosh, Oshkosh, Wisconsin 54901 


Flora Zambesiaca, 12(1) Araceae 

(including Lemnaceae).  

Haigh, Anna and Peter C. Boyce, with contri-

butions from Josef Bogner. 2012. ISBN 978-

1-84246-374-1, paperback; 54 pp. + 3 un-

numbered pages of back matter.  US$55.00.  

Royal Botanic Gardens, Kew, Richmond, Sur-

rey TW9 3AB, UK;; published 

by University of Chicago Press and available 

at their website,

It may be mentioned first that the contents of this 

part of the flora are given neither on the cover 

nor on the title page, as is also true for all the 

preceding parts of this series, which was begun 

in 1960.  The area covered by Flora Zambesiaca 

is the modern nations of  Botswana, Malawi, 

Mozambique, Zambia, and Zimbabwe, and also 

the Caprivi Strip, which falls between Zambia and 

Botswana.  The inclusion of the Lemnaceae follows 

the recommendation of the Angiosperm Phylogeny 

Group, although the overall arrangement of the 

flora follows Bentham & Hooker of the nineteenth 

century.  It is estimated that, when completed, the 

flora will account for some 10,000 species.  As 

hinted at by the numbers in the title proper, the 

entire flora is to be treated in a series of volumes, 14 

in all, with these volumes divided into 50 parts.  Of 

these 50 parts, 38 have appeared thus far.
The Araceae, in the traditional sense, include a 

great many cultivated species.  The authors elected 

to treat these as a separate group, just after the 

family description, and they are not included in the 

keys. All the genera in the keys have at least one 

species illustrated. 
The species treatments mention no common 

names, nor is there any discussion of local uses of 

any of the species, so far as I could detect. This is a 

background image


Plant Science Bulletin 58(4) 2012

Hemisphere. This introductory material, especially 

on the history of the discovery of these plants, is 

very interesting to read, but it will be frustrating 

to future scholars because most of the references 

cited in text are not listed in the Bibilography. 

Sarraceniaceae of North America dives right into the 

two North American genera and all their extreme 

morphological variation; like its counterpart, 

much of the literature cited in text is unfortunately 

missing from the Bibliography. The two volumes 

also can be read independently – each focuses 

on particular genera (Heliamphora in the first, 

Darlingtonia  and  Sarracenia in the second), each 

has its own index, and because each has its own 

cadre of co-authors, each has a very different take 

on taxonomy of the three genera. Nevertheless, new 

species and infraspecific taxa, complete with Latin 

descriptions and assignments of type specimens, 

are formally described in each volume. Although it 

is not unheard of to erect new taxa in peer-reviewed 

floras, it is very rare to do it in non-peer-reviewed 

coffee-table books. McPherson et al. (2009a, 

2009b) did the same in this two-volume treatment 

of Nepenthes (reviewed in PSB 56: 45-46). In all of 

these cases, it would have been better to subject 

these systematic hypotheses to peer review.
Although there are many more species of 

Heliamphora than of Darlingtonia and Sarracenia 

combined, Sarraceniaceae of South America is the 

smaller of the two, and the more taxonomically 

conservative. In part, the smaller size of South 

America reflects the lack of overall information 

on  Heliamphora, which grows primarily on the 

sandstone massifs (tepuis) of the Guyana Shield 

of Venezuela, Guyana, and Brazil. Tepuis are hard 

to access, difficult places to work once there, and 

consequently  Heliamphora has received much 

less scientific attention. Co-author Andreas 

Fleischmann is working on the systematics of the 

group for his dissertation project, and because 

that is not yet complete, the authors are rightly 

conservative in identifying species in the field and 

not identifying innumerable ecotypes, subspecies, 

varieties, or forms.
The same cannot be said for Sarraceniaceae of 

North America. Here, contemporary systematic 

approaches to the North American pitcher-

plant genera, such as those in Flora of North 

America (Mellichamp, 2009) derived from a 

careful consideration of both morphological and 

molecular data, and literally centuries of botanical 

research, are completely swept aside in favor of 

Schnell’s (2002) nomenclatural approach that 

formally names nearly every color morph, every 

isolated population, and every cultivated “sport” as 

a new variety or form. Although not prohibited by 

the International Code of Nomenclature for Algae, 

Fungi, and Plants, this system is neither rationally 

consistent (if it’s appropriate for Sarracenia, why 

not for Heliamphora?) nor can it be supported 

by morphological, molecular, or field data 

(summarized in Mellichamp, 2009). Rather, it can 

be seen most charitably as a philosophical view of 

species (and infraspecific taxa) as Platonic entities, a 

view roundly rejected by modern systematists who 

treat systematic taxonomy as a series of hypothesis 

to be tested, not as revealed truth. Alternatively, 

the seemingly infinite identification of infraspecific 

taxa could be seen as a way to bolster the market 

for unique (cultivated) varieties of pitcher plants 

among hobbyists and collectors. Given the extensive 

space in each volume dedicated to discussion of 

carnivorous plant “Societies and Recommended 

Suppliers” in both volumes, and that Sarraceniaceae 

of South America is co-authored by the owner 

of Wistuba – Exotic Plants in Germany, the latter 

explanation cannot be discounted.
Like other titles in McPherson’s burgeoning list of 

volumes on carnivorous plants, the two volumes 

on  Sarraceniaceae in the Americas introduce 

carnivorous plants to a wide audience, and the 

exquisite photographs and lavish production makes 

them a joy to leaf through. But as a resource for 

botanists, systematists, and evolutionary ecologists 

doing serious research on carnivorous plants, these 

volumes are disappointing.
–Aaron M. Ellison, Harvard Forest, Harvard 

University, 324 North Main Street, Petersham, MA 


References Cited:

MCPHERSON, S. 2007. Pitcher Plants of the 

Americas. The McDonald & Woodward 

Publishing Company, Blacksburg, Virginia. 


FLEISCHMANN. 2009a. Pitcher Plants of 

the Old World, Volume One. Redfern Natural 

History Productions, Dorset, England.


Fleischmann. 2009b. Pitcher Plants of the Old 

World, Volume Two. Redfern Natural History 

Productions, Dorset, England.

background image


Plant Science Bulletin 58(4) 2012

MELLICHAMP, T. L. 2009. Sarraceniaceae 

Dumortier – Pitcher Plant Family. Flora of 

North America 8: 348-363.

SCHNELL, D. E. 2002. Carnivorous Plants of the 

United States and Canada, 2nd edition. Timber 

Press, Portland, Oregon.

Tropical Plant Collecting: From the 

Field to the Internet.  

Mori, Scott A., Amy Berkov, Carol A. Gracie & 

Edmund F. Hecklau.  

ISBN 978-85-65005-00-5 

(Paper US$34.95) 332pp. 

TECC Editora LTDA, Rua João Pio Duarte 

Silva, 602, Apto.eos, Bloco A, CEP: 88037-

000, Florianópolis, Santa Catarina, Brasil.

Scott Mori, the senior editor, with nearly half 

a century of experience in tropical botany as a 

collector and specialist of neotropical plants, is 

a dedicated and well-published scientist and a 

curator of various herbaria. He and the three co-

authors manage to condense this lifetime worth of 

experience into 600 pages of well-written, easy-to-

read tips, suggestions, and recommended protocols 

for tropical plant collection and curation. When I 

first heard about Mori’s Tropical Plant Collecting: 

From the Field to the Internet, I assumed it was a 

technically written textbook. I was pleasantly 

surprised that it was not. Instead, this book is a 

narrative of the editors’ experiences and lessons 

learned while collecting plants in the tropics. The 

first portion of the book is comprised of a series 

of colloquial anecdotes that describe living in the 

tropics and the many issues that arise. The book 

then systematically provides the reader suggestions 

and detailed protocols on how to collect and 

preserve plants and then submit the specimens to 

herbaria. It also describes herbarium curation and 

suggestions for utilizing herbarium records for 

online databases. 
The first two chapters are autobiographical. 

Chapter one covers Mori’s 47-year career as a 

tropical botanist, and in chapter two, one of Mori’s 

past students, Amy Berkov, describes how a year 

in the tropics transitioned her from a 36-year-old 

artist to what she is now—a PhD-trained tropical 

entomologist. Though the first two chapters 

establish the credibility of the editors and describe 

some trials and tribulations of tropical work, there 

is little tangible information in them for aspiring 

tropical biologists. They did, however, discuss the 

feelings of loneliness and depression that come 

along with the excitement the tropics bring.
The remainder of the book is packed with practical 

information for not only those who plan to collect 

plants in tropical locations but those who are 

interested in herbarium curation and maintenance. 

I could not pin-point a single most important 

section because each chapter has information 

tailored for individuals who fall into specific niches 

and responsibilities within the field of botany.
For those preparing to travel to the tropics, the 

gem of the book is chapter three, ‘Tips for Tropical 

Biologists.’ This chapter provides suggestions for 

setting up camp and navigating the forest. Though 

admittedly not all-inclusive, it does provide a 

laundry list of many dangers, which include not 

only parasites and animals but common accidents 

tropical biologists should know. 
Chapter four is the most useful chapter for those 

who do not know the proper etiquette and protocol 

to follow when collecting and preparing plants for 

distribution to herbaria. This chapter discusses 

what samples to collect, how and when to collect 

the samples, and how to preserve and maintain the 

samples prior to submission into an herbarium. 

Mori stresses often the importance of collecting 

underrepresented plants and making high-quality 

specimens. This chapter also presents protocols 

and general rules for collecting vouchers for 

ecological studies, which answered many questions 

I had for my own research. This chapter provides 

information that will maintain continuity and keep 

information parsimonious if ecologists follow the 

protocols established by Mori. 
Chapters five and six focus on herbaria operation 

and use. In chapter five, Mori describes procedures 

for submitting specimens to herbaria and how a well 

organized, up-kept herbarium is maintained with 

proper labeling systems, modern databases, and 

how hard copy records can be supplemented with 

digital information and images. This will provide 

continuity of record keeping within and between 

herbaria. He also provides an example of a mission 

statement that could be used as a template for 

those who plan to establish an herbarium. Chapter 

six illustrates how herbarium records can be used 

and presented to a large audience via the internet 

as e-floras, e-monographs, and descriptions of 

individual species. 

background image


Plant Science Bulletin 58(4) 2012

Mori finishes with a chapter on rainforest 

conservation, in which he describes rainforest 

ecology and the consequences of land use 

conversion and fragmentation. In this chapter, 

Mori makes an exceptionally strong economic case 

for tropical rainforest protection by focusing on 

ecosystem services and the value of harvested foods 

or other commodities provided by the forests.
The book includes appendices that provide 

information on potential funding sources, and also 

includes useful checklists of essential equipment. 

An index is also included to help the reader find 

important topics. 
Throughout this book, the reader senses Mori’s 

enthusiasm and concern for uninformed, naive, or 

poorly trained tropical botanists. Anecdotes in this 

book illustrate why it’s important to be prepared 

and not delve into the tropics lightly. The rewards 

are huge for science and scientists, but the costs 

can be large and may result in death. Readers will 

also get a sense of the time and effort required 

for studies in tropical biology, where five years of 

collection is the suggested minimum time, though 

it typically takes a lifetime. 
I have few complaints regarding this book, and those 

I do have are superficial and do not detract from the 

quality of the information presented. My primary 

complaint is that many of the photos provided 

are not clear, especially those showing pathogen 

infections and insect vectors. Mori discusses the 

importance of high quality, high resolution photos 

of plant characteristics, but the examples provided 

in this book are poor quality, black-and-white dot 

matrix images. Color plates of high-resolution 

photographs would have been ideal.
Mori provides addresses, phone numbers, and 

e-mails of companies that sell the equipment he 

uses in the field. He also references Google often 

and specific software packages used for database 

creation. Obviously these references are fine for 

the present, but this information will become out-

dated rather quickly and will certainly not be useful 

in the future. 
This book is not a pocket guide or one I would 

travel with if space was limited and weight was a 

factor. Most of the tips and suggestions are hidden 

in blocks of text, so they may be inaccessible when 

needed. I would recommend that readers transcribe 

the information gleaned from this book into their 

field notebook for quick reference.  
In conclusion, the style of Mori’s writing makes 

the book approachable for scientist and lay-

persons alike who wish to spend time in the tropics 

collecting plants. This book is also a great resource 

for people who are establishing an herbarium or 

aspire to write floras or monographs. Mori and 

his colleagues aim to “make the work of tropical 

biologists safer, easier, and more comfortable.” This 

aim will certainly be achieved if tropical botanists 

read this book. 
-Kevyn J. Juneau, The School of Forest Resources 

and Environmental Science, Michigan Technological 

University, Houghton, MI 49931. 

Aldrovanda: The Waterwheel Plant

Adam Cross. 

2012. ISBN-13: 978-1-908787-04-0

Hardcover, UK£17.99 (approx. US$ 34.99). 

xiii+248 pp. 

Redfern Natural History Productions, Poole, 

Dorset, England. http://www.redfernnatur-

The waterwheel plant, Aldrovanda vesiculosa

is one of the most curious of all botanical 

curiosities. This perennial, rootless, aquatic 

carnivorous plant is essentially an aquatic Venus’ 

flytrap (Dionaea muscipula)–its leaves have been 

modified into snap-traps–but with growth habits 

and physiological characteristics much more like 

the completely unrelated bladderworts (Utricularia 

spp.). Aldrovanda vesiculosa is the only species in 

the genus, and represents one of only three genera 

in the sundew family (Droseraceae); the other two 

are the monotypic and aforementioned Dionaea 

and the quite diverse Drosera. In spite of the many 

unique aspects of Aldrovanda and well over 150 

years of research into all aspects of its biology, there 

has not until now been a book-length monograph 

devoted to it. As such, Cross’ Aldrovanda is a most 

welcome compendium of information on this plant.
In a relatively short and lavishly illustrated book, 

Cross summarizes what is known about the 

taxonomic history; paleobotany and evolution; 

ecophysiology and morphology; habitat and 

distribution; population genetics; conservation 

issues; and methods for cultivation of Aldrovanda

Nearly 200 years of literature on the plant–

from peer-reviewed through grey to popular–is 

thoroughly reviewed (the Bibliography itself is 30 

pages long), and Cross not only summarizes this 

literature but also reflects on studies needed to fill 

background image


Plant Science Bulletin 58(4) 2012

in the gaps in our knowledge on all of these topics. 

Not bad for a young doctoral student from Western 

Although the summaries of the basic scientific 

literature are most welcome, probably the most 

valuable aspect of the book is its discussion and 

highlighting of the pressing need to protect and 

conserve Aldrovanda. In spite of its geographically 

widespread distribution–Aldrovanda grows in 

Europe, Asia, Africa, and Australia–and relatively 

broad tolerance of water chemical characteristics 

and pH, it is very intolerant of habitat conversion, 

nutrient loading, or pollution, and so is locally 

extinct or on the brink thereof throughout its entire 

range. Some populations are protected and growing, 

but of 379 natural and restored populations known 

from historical records, herbarium data, or new 

observations, only 50 are extant. Similarly, of 

69 introduced populations, only 28 are extant, 

including 10 in the United States, well outside of 

its natural range. The lengthy tabulation of the 

status of natural and introduced populations makes 

depressing reading indeed, but clearly illustrates 

the conservation challenges faced by many aquatic 

plants, including Aldrovanda.
As with all of the books on carnivorous plants 

published by Redfern Natural History Productions, 

the photography is exceptional. The majority of the 

photographs are by the author, but many others, 

including well-known experts on Aldrovanda 

biology, including Lubomír Adamec, Kamil Pasek, 

and Ryszard Kaminski grace the pages as well. 

Cross has clearly benefited from his interactions 

with these individuals, and many others, who not 

only provided him with great photographs but 

also fact-checked the manuscript. At the same 

time, Cross continues in the tradition of other 

Redfern publications in using the opportunity 

of a book-length publication to erect new taxa. 

Herein, only one new variety is formally named: 

Aldrovanda vesiculosa L. var. rubsecens A. T. Cross 

& L. Adamec. This variety is distinguished by its 

expression of anthocyanins in bright habitats and 

by its geographic restriction to all of Australia, 

Botswana, and Lake Balata-to in Hungary. It would 

really have been better to publish a new taxon in a 

peer-reviewed journal.
Aldrovanda: The Waterwheel Plant sets a series of 

benchmark for future studies of this species. It is not 

only a book every carnivorous plant aficionado will 

want on his or her shelf, but it also should be near 

at hand for botanists focused on the Caryophyllales 

and for those studying physiology of aquatic plants 

and how plants move. And it will look pretty on the 

coffee table, too.
– Aaron M. Ellison, Harvard Forest, Harvard Uni-

versity, Petersham, Massachusetts, USA

background image


The Anatomy of Palms: Arecaceae – Palmae.  Tomlinson, P. Barry, James W. Horn, and Jack B. Fisher.  

2012.  ISBN 978-0-19-955892-6 (Cloth US$225.00) 251 pp.  Oxford University Press, 2001 Evans Road, 

Cary, NC 27513.
Beach Forests and Mangrove Associates in the Philippines.  Primavera, J.H. and R.B. Sadaba. 2012.  

ISBN 978-971-9931-01-0 (paper US$50.00) 160 pp.  SEAFDEC Aquaculture Department and UNESCO 

Jakarta Office,  SEAFDEC Aquaculture Department, Tigbauan 5021, Iloilo, Philippines. 
Life of a Leaf.  Vogel, Steven. 2012.  ISBN 978-0-22685939-2 (Cloth US$35.00) 303 pp.  The University of 

Chicago Press, 1427 E. 60th St., Chicago, Il. 
The World of Northern Evergreens, 2nd ed.  Pielou, E.C.  2011.  ISBN 978-08014-7740-9 (Paper US$19.95)  

168pp.  Cornell University Press, Sage House, 512 East State Street, Ithaca, New York 14850. 
Medicinal Plants and the Legacy of Richard E. Schultes.  Ponman, Bruce E. and Rainer W. Bussmann, 

(Eds.). 2012.   ISBN 978-0-9848415-2-3 (Paper US$24.95) 138pp.  William L. Brown Center at the Missouri 

Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299. 
Systematics, Biodiversity and Ecology of Lichens.  Kärnefelt, Ingvar, Mark R.D. Seaward, and 

Arne Thell. 2012.  ISBN 978-3-443-58087-2 (Paper, €87.00) 290 pp.  J. Cramer, Begrüder Borntraeger 

Verlagsbuchhandlung, Johannesstrasse 3A, 70176, Stuttgart, Germany. 
The Evolutionary Relevance of Vegetative Long-shoot/Short-shoot Differentiation in Gymnospermous 

Tree Species.  Dörken, Martin.  2012.  ISBN 978-3-510-48032-6 (Paper €94.00) 93pp.  Schweizerbart 

Science Publishers, Johannesstrasse 3A, 70176, Stuttgart, Germany. 
Plants of the Chesapeake Bay.  Musselman, Lytton John and David A. Knepper. 2012.  ISBN 978-1-4214-

0498-1. (Paper US$24.95) 216 pp. The Johns Hopkins University Press, 2715 N. Charles Street,  Baltimore, 

MD 21218. 
Air Plants: Epiphytes and Aerial Gardens.  Benzing, David H.  2012.  ISBN 978-0-8014-5043-3 (Cloth 

US$39.95) 248 pp.  Comstock Publishing Associates, Cornell University Press,  Sage House, 512 East State 

Street, Ithaca, New York, 14850. 
Huanduj: Brugmansia.  Hay, Alistair, Monika Gottschalk, and Adolfo Holguin.  2012.  ISBN 978-1-84246-

477-9 (Cloth US$110.00) 424 pp. Royal Botanic Gardens, Hew, Distributed by University of Chicago Press, 

1427 East 60th Street, Chicago, Illinois 60637-2954. 
Natural Products Isolation, 3rd Ed. Sarker, Satyajit D.; Nahar, Lutfun (Eds.) 2012. ISBN: 978-1-61779-

623-4 (Cloth US$159.00) 552 pp.  Humana Press, Springer Science + Business Media, 233 Spring Street,New 

York, NY 10013. 
Plant DNA and Barcoding: Methods and Protocols.  Sucher, Nicholas J., James R. Hennell & Maria C. 

Carles (Eds.) 2012.  ISBN: 978-1-61779-608-1 (Cloth US$119.00) 202 pp.  Humana Press.   
The Beauty of Houseplants.  Gough, Tom and David Longman.  2011.  ISBN 978-1-889878-30-0.  (Cloth 

US$22.95)  118 pp.  Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, Texas 76107. 
Plant Nutrition and Soil Fertility Manual, Second Edition.  J. Benton Jones, Jr. 2012.  ISBN 978-1-439-

81609-7. (Paper US$79.95) 304 pp.  CRC Press, Taylor and Francis Group.  6000 Broken Sound Parkway 

NW, Suite 300, Boca Raton, FL 33487 
Recombinant Gene Expression: Reviews and Protocols, 3rd Ed. Lorence, Angela.  2011.  ISBN: 978-1-

617-79432-2 (Cloth US $159.00) 649 pages, 105 illustrations.  Humana Press, 333 Meadowlands Parkway, 

Secaucus, NJ 07094. 
Peonies of the World: Polymorphism and Diversity.  Hong, De-Yuan.  2012.  ISBN 978-1-84246-458-8 

(Cloth US$115.00) 94 pp.  Royal Botanic Gardens, Kew.  Distributed by University of Chicago Press, 1427 

E. 60th St., Chicago, Il 60637. 

Books Received

background image


Plant Science Bulletin 58(4) 2012

The Diatoms: Applications for the Environmental and Earth Sciences.  Smol, John P. and Eugene F. 

Stoermer. 2010. ISBN 978-0-521-50996-1 (Cloth US$225.00) 667 pp. Cambridge University Press, 32 

Avenue of the Americas, New York, NY 10013. 
Bromeliads for Home and Garden.  Kramer, Jack. 2011. ISBN 798-0-8130-3544-4. (Paper US$26.95) 

176pp. University Press of Florida. 
Photosynthesis Research Protocols, 2nd ed. Carpentier, Robert (ed.) 2011. ISBN 978-1-60761-924-6 

(Cloth US$139.00) Humana Press, 233 Spring Street, New York, NY 10013. 
Landscapes and Hydrology of the Predrainage Everglades. 2011. McVoy, Christopher, Winifred Park 

Said, Jayantha Obeysekera, Joel VanArman, and Thomas W. Dreschel. ISBN 978-0-8130-3535-2. (Cloth 

US$85.00) 368 pp. University Press of Florida, 15 NW 15th Street, Gainesville, FL 32611-2079. 
Grasslands of Wales: A Survey of Lowland Species-Rich Grasslands, 1987-2004. Stevens, D.P., 

S.L.N.Smith, T.H. Blackstock, S.D.S. Bosanquet, and J.P. Stevens. 2010. ISBN 978-0-7083-2255-0 (Cloth 

US$85.00) 336 pp. University of Wales Press, distributed by the University of Chicago Press, 1427 E. 60th 

Street, Chicago, IL 60637. 
Habitats of Wales: A Comprehensive Field Survey, 1979-1997. Blackstock, T.H., E.A. Howe, J.P. Stevens, 

C.R. Burrows, and P.S. Jones. 2010. ISBN 978-0-7083-2257-4 (Cloth US$85.00) 240 pp. University of Wales 

Press, distributed by the University of Chicago Press, 1427 E. 60th Street, Chicago, IL 60637. 
Nova Hedwigia Beiheft 135, Diatom Taxonomy, Ultrastructure and Ecology: Modern Methods and 

Timeless Questions. A tribute to Eugene F. Stoermer. 2009. ISBN 978-3-443-51057-2 (Paper €139.00) 369 

pp, J. Cramer in Borntraeger Science Publishers, Johannesstrasse 3 A, 70176 Stuttgart, Germany. 
Marine Phytoplankton: Selected Phytoplankton species from the North Sea around Helgoland and 

Sylt. Hoppenrath, Mona, Malte Elbrächter, and Gerhard Drebes. ISBN 978-3-510-61392-2 (Paper €18.80) 

264 pp. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Johannesstrasse 3 A, 70176 

Stuttgart, Germany. 
Diversity and Ecology of Lichens in Polar and Mountain Ecosystems. Hafellner, Josef, Ingvar Kärnefelt 

and Volkmar Wirth (eds). 2010. ISBN 978-3-443-58083-4 (Paper €104.00) 389 pp. J. Cramer in Borntraeger 

Science Publishers, Johannesstrasse 3 A, 70176 Stuttgart, Germany. 

background image


Plant Science Bulletin 58(4) 2012

Botany 2013 will be held in New Orleans Louisiana, at the Riverside Hilton, July 27 - 31, 2013. The theme 

of this year’s meeting, “Celebrating Diversity,” is well suited to the diverse flora of southern Louisiana 

and the wide array of talks provided by the five scientific societies participating in Botany 2013. These 

include are the American Bryological and Lichenological Society, American Society of Plant Taxonomists, 

American Fern Society, Botanical Society of America, and International Association for Plant Taxonomy.

 We met in New Orleans recently to inspect our meeting facilities, meet the on-site staff, coordinate 

programs, and to plan events for our upcoming meeting. Downtown New Orleans and the surrounding 

natural areas in southern Louisiana offer tremendous opportunities for a memorable meeting this year. 

Our meeting facilities at the Riverside Hilton offer beautiful and state of the art facilities for our meeting. 

The rooms are spacious and are serviced by professional staff who will quickly attend to any needs that 

may arise to insure a seamless set of events. We are situated within easy walking distance to downtown 

New Orleans and the historic French Quarter, offering many places to socialize with our colleagues during 

evening get togethers with many restaurants, bars with outdoor seating, and entertainment venues.

 Field trips are always popular, and Louisiana has noted natural areas. Our field trip schedule is taking 

shape with trips suiting attendees in all of our diverse disciplines. We are making every effort to have 

wonderful field trips led by professionals fully knowledgeable in the plants and sites under their direction. 

And how cool it will be to take some tours offering views of native carnivorous plants and maybe alligators!

 Botany 2013 offers 12 symposia and nine colloquia (

symposia.php) in a wide range of botanical disciplines that is emblematic of our annual meetings. These 

range genomics, public policy, digitizing herbaria, taxonomy, evolution, ecology, conservation, biodiversity, 

and evolutionary topics from bryophytes and ferns to fossils to angiosperms.

This year’s Sunday evening plenary speaker is Dr. Nalini Nadkarni, who will speak on “Celebrating 

diversity in the understanding of science: Botanists as ambassadors to a spectrum of humans.” Please 

see a video of her work recently released on CNN:

c2#/video/living/2012/11/16/the-next-list-nalini-nadkarni-weekend-pkg.cnn David White will be our 

Regional Botany speaker.

Botany 2012 experienced record levels of student involvement, and we are making every effort to 

continue this in Botany 2013: A generous grant from Monsanto Corporation is providing opportunities 

for students to network and socialize.

 Abstract submission will begin on February 2 and close April 1, and we will keep you posted of this date 

and other activities and speakers as the meeting planning progress. We look forward to seeing you in New 

Orleans this summer!

Any questions - please feel free to contact Johanne Stogran ( or David Spooner 

( for details, or refer to conference updates posted on our meeting website:

background image

Winter 2012 Volume 58 Number 4

The Botanical Society of 

America is a membership 

society whose mission  is to: 

promote botany, the field of 

basic science dealing with the 

study & inquiry into the form, 

function, development, diversity, 

reproduction, evolution, & uses 

of plants & their interactions 

within the biosphere.|

ISSN 0032-0919 

Published quarterly by  

Botanical Society of America, Inc.  

4475 Castleman Avenue 

St. Louis, MO 63166-0299 

Periodicals postage is paid at  

St. Louis, MO & additional  

mailing offices. 


Send address changes to:

Botanical Society of America 

Business Office 

P.O. Box 299 

St. Louis, MO 63166-0299 

The yearly subscription rate of $15  

is included in the membership  

Address Editorial Matters (only) to: 

Marshall D. Sundberg 


Department of Biological Sciences  

Emporia State University  

1200 Commercial St. 

Emporia, KS 66801-5057 

Phone 620-341-5605

Plant Science Bulletin 

 Featured Image

Plant Science 


The BSA’s new journal, Applications in Plant Sciences (APPS), 

launches in January as part of BioOne’s Open Access collection. 

APPS originated as the American Journal of Botany’s online-only 

section, AJB Primer Notes & Protocols in the Plant Sciences, which 

was begun in 2009 to serve as a publication outlet for researchers in 

genetic and molecular areas. APPS is a monthly, online-only, open 

access, peer-reviewed journal that promotes the rapid dissemination 

of newly developed, innovative tools and protocols in all areas of the 

plant sciences, including genetics, structure, function, development, 

evolution, systematics, and ecology.  

The Editorial Board welcomes submissions, particularly of protocols 

that improve investigations in any area of plant biology, including 

methods on genetic markers, and morphological, physiological, 

biochemical, anatomical, and ecological data collection. Authors 

wishing to contribute papers to APPS should submit their manuscripts 

online at after consulting the 

newly expanded Instructions for Authors (

apps/APPS_Author_Instructions.html) for article types, editorial 

policies, and submission guidelines.

APPS Editorial Board: 

Theresa Culley (Editor-in-Chief) 

Richard Cronn 

Mitch Cruzan 

Kent Holsinger 

Jeff Maughan 

Mike Moore 

Pam Soltis 

Lisa Wallace

Beth Parada (Online Publication Editor)


Editorial office contact: 

background image

See you in New Orleans......

Symposia and Colloquia Announced

Join these scientific societies for Botany 2013


Dr. Nalini Nadkarni 

University of Utah

Plenary Speaker - July 28, 2013 


Celebrating diversity  

in the understanding of science:   

Botanists as ambassadors to a  

spectrum of humans

Back to overview